Chandraker, Manmohan
MemSAC: Memory Augmented Sample Consistency for Large Scale Unsupervised Domain Adaptation
Kalluri, Tarun, Sharma, Astuti, Chandraker, Manmohan
Practical real world datasets with plentiful categories introduce new challenges for unsupervised domain adaptation like small inter-class discriminability, that existing approaches relying on domain invariance alone cannot handle sufficiently well. In this work we propose MemSAC, which exploits sample level similarity across source and target domains to achieve discriminative transfer, along with architectures that scale to a large number of categories. For this purpose, we first introduce a memory augmented approach to efficiently extract pairwise similarity relations between labeled source and unlabeled target domain instances, suited to handle an arbitrary number of classes. Next, we propose and theoretically justify a novel variant of the contrastive loss to promote local consistency among within-class cross domain samples while enforcing separation between classes, thus preserving discriminative transfer from source to target. We validate the advantages of MemSAC with significant improvements over previous state-of-the-art on multiple challenging transfer tasks designed for large-scale adaptation, such as DomainNet with 345 classes and fine-grained adaptation on Caltech-UCSD birds dataset with 200 classes. We also provide in-depth analysis and insights into the effectiveness of MemSAC. Code is available on the project webpage https://tarun005.github.io/MemSAC.
Real-Time Radiance Fields for Single-Image Portrait View Synthesis
Trevithick, Alex, Chan, Matthew, Stengel, Michael, Chan, Eric R., Liu, Chao, Yu, Zhiding, Khamis, Sameh, Chandraker, Manmohan, Ramamoorthi, Ravi, Nagano, Koki
We present a one-shot method to infer and render a photorealistic 3D representation from a single unposed image (e.g., face portrait) in real-time. Given a single RGB input, our image encoder directly predicts a canonical triplane representation of a neural radiance field for 3D-aware novel view synthesis via volume rendering. Our method is fast (24 fps) on consumer hardware, and produces higher quality results than strong GAN-inversion baselines that require test-time optimization. To train our triplane encoder pipeline, we use only synthetic data, showing how to distill the knowledge from a pretrained 3D GAN into a feedforward encoder. Technical contributions include a Vision Transformer-based triplane encoder, a camera data augmentation strategy, and a well-designed loss function for synthetic data training. We benchmark against the state-of-the-art methods, demonstrating significant improvements in robustness and image quality in challenging real-world settings. We showcase our results on portraits of faces (FFHQ) and cats (AFHQ), but our algorithm can also be applied in the future to other categories with a 3D-aware image generator.
GeoNet: Benchmarking Unsupervised Adaptation across Geographies
Kalluri, Tarun, Xu, Wangdong, Chandraker, Manmohan
In recent years, several efforts have been aimed at improving the robustness of vision models to domains and environments unseen during training. An important practical problem pertains to models deployed in a new geography that is under-represented in the training dataset, posing a direct challenge to fair and inclusive computer vision. In this paper, we study the problem of geographic robustness and make three main contributions. First, we introduce a large-scale dataset GeoNet for geographic adaptation containing benchmarks across diverse tasks like scene recognition (GeoPlaces), image classification (GeoImNet) and universal adaptation (GeoUniDA). Second, we investigate the nature of distribution shifts typical to the problem of geographic adaptation and hypothesize that the major source of domain shifts arise from significant variations in scene context (context shift), object design (design shift) and label distribution (prior shift) across geographies. Third, we conduct an extensive evaluation of several state-of-the-art unsupervised domain adaptation algorithms and architectures on GeoNet, showing that they do not suffice for geographical adaptation, and that large-scale pre-training using large vision models also does not lead to geographic robustness. Our dataset is publicly available at https://tarun005.github.io/GeoNet.
Open-world Instance Segmentation: Top-down Learning with Bottom-up Supervision
Kalluri, Tarun, Wang, Weiyao, Wang, Heng, Chandraker, Manmohan, Torresani, Lorenzo, Tran, Du
Many top-down architectures for instance segmentation achieve significant success when trained and tested on pre-defined closed-world taxonomy. However, when deployed in the open world, they exhibit notable bias towards seen classes and suffer from significant performance drop. In this work, we propose a novel approach for open world instance segmentation called bottom-Up and top-Down Open-world Segmentation (UDOS) that combines classical bottom-up segmentation algorithms within a top-down learning framework. UDOS first predicts parts of objects using a top-down network trained with weak supervision from bottom-up segmentations. The bottom-up segmentations are class-agnostic and do not overfit to specific taxonomies. The part-masks are then fed into affinity-based grouping and refinement modules to predict robust instance-level segmentations. UDOS enjoys both the speed and efficiency from the top-down architectures and the generalization ability to unseen categories from bottom-up supervision. We validate the strengths of UDOS on multiple cross-category as well as cross-dataset transfer tasks from 5 challenging datasets including MS-COCO, LVIS, ADE20k, UVO and OpenImages, achieving significant improvements over state-of-the-art across the board. Our code and models are available on our project page.
YMIR: A Rapid Data-centric Development Platform for Vision Applications
Huang, Phoenix X., Hu, Wenze, Brendel, William, Chandraker, Manmohan, Li, Li-Jia, Wang, Xiaoyu
This paper introduces an open source platform to support the rapid development of computer vision applications at scale. The platform puts the efficient data development at the center of the machine learning development process, integrates active learning methods, data and model version control, and uses concepts such as projects to enable fast iterations of multiple task specific datasets in parallel. This platform abstracts the development process into core states and operations, and integrates third party tools via open APIs as implementations of the operations. This open design reduces the development cost and adoption cost for ML teams with existing tools. At the same time, the platform supports recording project development histories, through which successful projects can be shared to further boost model production efficiency on similar tasks. The platform is open source and is already used internally to meet the increasing demand for different real world computer vision applications.
Learning To Simulate
Ruiz, Nataniel, Schulter, Samuel, Chandraker, Manmohan
Simulation is a useful tool in situations where training data for machine learning models is costly to annotate or even hard to acquire. In this work, we propose a reinforcement learning-based method for automatically adjusting the parameters of any (non-differentiable) simulator, thereby controlling the distribution of synthesized data in order to maximize the accuracy of a model trained on that data. In contrast to prior art that hand-crafts these simulation parameters or adjusts only parts of the available parameters, our approach fully controls the simulator with the actual underlying goal of maximizing accuracy, rather than mimicking the real data distribution or randomly generating a large volume of data. We find that our approach (i) quickly converges to the optimal simulation parameters in controlled experiments and (ii) can indeed discover good sets of parameters for an image rendering simulator in actual computer vision applications.
Learning Efficient Object Detection Models with Knowledge Distillation
Chen, Guobin, Choi, Wongun, Yu, Xiang, Han, Tony, Chandraker, Manmohan
Despite significant accuracy improvement in convolutional neural networks (CNN) based object detectors, they often require prohibitive runtimes to process an image for real-time applications. State-of-the-art models often use very deep networks with a large number of floating point operations. Efforts such as model compression learn compact models with fewer number of parameters, but with much reduced accuracy. In this work, we propose a new framework to learn compact and fast ob- ject detection networks with improved accuracy using knowledge distillation [20] and hint learning [34]. Although knowledge distillation has demonstrated excellent improvements for simpler classification setups, the complexity of detection poses new challenges in the form of regression, region proposals and less voluminous la- bels. We address this through several innovations such as a weighted cross-entropy loss to address class imbalance, a teacher bounded loss to handle the regression component and adaptation layers to better learn from intermediate teacher distribu- tions. We conduct comprehensive empirical evaluation with different distillation configurations over multiple datasets including PASCAL, KITTI, ILSVRC and MS-COCO. Our results show consistent improvement in accuracy-speed trade-offs for modern multi-class detection models.
Universal Correspondence Network
Choy, Christopher B., Gwak, JunYoung, Savarese, Silvio, Chandraker, Manmohan
We present a deep learning framework for accurate visual correspondences and demonstrate its effectiveness for both geometric and semantic matching, spanning across rigid motions to intra-class shape or appearance variations. In contrast to previous CNN-based approaches that optimize a surrogate patch similarity objective, we use deep metric learning to directly learn a feature space that preserves either geometric or semantic similarity. Our fully convolutional architecture, along with a novel correspondence contrastive loss allows faster training by effective reuse of computations, accurate gradient computation through the use of thousands of examples per image pair and faster testing with $O(n)$ feedforward passes for n keypoints, instead of $O(n^2)$ for typical patch similarity methods. We propose a convolutional spatial transformer to mimic patch normalization in traditional features like SIFT, which is shown to dramatically boost accuracy for semantic correspondences across intra-class shape variations. Extensive experiments on KITTI, PASCAL and CUB-2011 datasets demonstrate the significant advantages of our features over prior works that use either hand-constructed or learned features.