Chandra, Ritesh
A Diagnosis and Treatment of Liver Diseases: Integrating Batch Processing, Rule-Based Event Detection and Explainable Artificial Intelligence
Chandra, Ritesh, Tiwari, Sadhana, Rastogi, Satyam, Agarwal, Sonali
Liver diseases pose a significant global health burden, impacting many individuals and having substantial economic and social consequences. Rising liver problems are considered a fatal disease in many countries, such as Egypt and Moldova. This study aims to develop a diagnosis and treatment model for liver disease using Basic Formal Ontology (BFO), Patient Clinical Data (PCD) ontology, and detection rules derived from a decision tree algorithm. For the development of the ontology, the National Viral Hepatitis Control Program (NVHCP) guidelines were used, which made the ontology more accurate and reliable. The Apache Jena framework uses batch processing to detect events based on these rules. Based on the event detected, queries can be directly processed using SPARQL. We convert these Decision Tree (DT) and medical guidelines-based rules into Semantic Web Rule Language (SWRL) to operationalize the ontology. Using this SWRL in the ontology to predict different types of liver disease with the help of the Pellet and Drools inference engines in Protege Tools, a total of 615 records were taken from different liver diseases. After inferring the rules, the result can be generated for the patient according to the rules, and other patient-related details, along with different precautionary suggestions, can be obtained based on these results. These rules can make suggestions more accurate with the help of Explainable Artificial Intelligence (XAI) with open API-based suggestions. When the patient has prescribed a medical test, the model accommodates this result using optical character recognition (OCR), and the same process applies when the patient has prescribed a further medical suggestion according to the test report. These models combine to form a comprehensive Decision Support System (DSS) for the diagnosis of liver disease.
Multimodal Data-Driven Classification of Mental Disorders: A Comprehensive Approach to Diagnosing Depression, Anxiety, and Schizophrenia
Singh, Himanshi, Tiwari, Sadhana, Agarwal, Sonali, Chandra, Ritesh, Sonbhadra, Sanjay Kumar, Singh, Vrijendra
This study investigates the potential of multimodal data integration, which combines electroencephalogram (EEG) data with sociodemographic characteristics like age, sex, education, and intelligence quotient (IQ), to diagnose mental diseases like schizophrenia, depression, and anxiety. Using Apache Spark and convolutional neural networks (CNNs), a data-driven classification pipeline has been developed for big data environment to effectively analyze massive datasets. In order to evaluate brain activity and connection patterns associated with mental disorders, EEG parameters such as power spectral density (PSD) and coherence are examined. The importance of coherence features is highlighted by comparative analysis, which shows significant improvement in classification accuracy and robustness. This study emphasizes the significance of holistic approaches for efficient diagnostic tools by integrating a variety of data sources. The findings open the door for creative, data-driven approaches to treating psychiatric diseases by demonstrating the potential of utilizing big data, sophisticated deep learning methods, and multimodal datasets to enhance the precision, usability, and comprehension of mental health diagnostics.
Innovative Framework for Early Estimation of Mental Disorder Scores to Enable Timely Interventions
Singh, Himanshi, Tiwari, Sadhana, Agarwal, Sonali, Chandra, Ritesh, Sonbhadra, Sanjay Kumar, Singh, Vrijendra
-- Individuals' general well - being is greatly impacted by mental health conditions including depression and Post - Traumatic Stress Disorder (PTSD), underscoring the importance of early detection and precise diagnosis in order to facilitate prompt clinical in tervention. An advanced multimodal deep learning system for the automated classification of PTSD and depression is presented in this paper. Utilizing textual and audio data from clinical interview datasets, the method com - bines features taken from both mo dalities by combining the architectures of LSTM (Long Short - Term Memory) and BiLSTM (Bidirectional Long Short - Term Memory).Although text features focus on speech's semantic and grammatical components; audio features capture vocal traits including rhythm, t one, and pitch. This combination of modalities enhances the model's capacity to identify minute patterns connected to mental health conditions. Using test datasets, the proposed method achieves classification accuracies of 92% for depression and 93% for PT SD, outper - forming traditional unimodal approaches and demonstrating its accuracy and robustness. In addi - tion to lowering people's quality of life, many illnesses have a significant negative impact on society and the economy. If not treated or recognized, mental health issues can lead to chronic diseases, decreased functioning, and even higher death rates. In under - resourced areas mental health issues are prevalent, even with advancements in clinical practice, traditional methods of diagnosing these disorders -- such as psychological testing and in - person interviews -- are still limited due to their subjective nature, resource - intensive nature, and reliance on the availabil - ity of qualified healthcare professionals.
Fuzzy Rule based Intelligent Cardiovascular Disease Prediction using Complex Event Processing
Kumar, Shashi Shekhar, Harsh, Anurag, Chandra, Ritesh, Agarwal, Sonali
Cardiovascular disease (CVDs) is a rapidly rising global concern due to unhealthy diets, lack of physical activity, and other factors. According to the World Health Organization (WHO), primary risk factors include elevated blood pressure, glucose, blood lipids, and obesity. Recent research has focused on accurate and timely disease prediction to reduce risk and fatalities, often relying on predictive models trained on large datasets, which require intensive training. An intelligent system for CVDs patients could greatly assist in making informed decisions by effectively analyzing health parameters. Complex Event Processing (CEP) has emerged as a valuable method for solving real-time challenges by aggregating patterns of interest and their causes and effects on end users. In this work, we propose a fuzzy rule-based system for monitoring clinical data to provide real-time decision support. We designed fuzzy rules based on clinical and WHO standards to ensure accurate predictions. Our integrated approach uses Apache Kafka and Spark for data streaming, and the Siddhi CEP engine for event processing. Additionally, we pass numerous cardiovascular disease-related parameters through CEP engines to ensure fast and reliable prediction decisions. To validate the effectiveness of our approach, we simulated real-time, unseen data to predict cardiovascular disease. Using synthetic data (1000 samples), we categorized it into "Very Low Risk, Low Risk, Medium Risk, High Risk, and Very High Risk." Validation results showed that 20% of samples were categorized as very low risk, 15-45% as low risk, 35-65% as medium risk, 55-85% as high risk, and 75% as very high risk.
Decision support system for Forest fire management using Ontology with Big Data and LLMs
Chandra, Ritesh, Kumar, Shashi Shekhar, Patra, Rushil, Agarwal, Sonali
Forests are crucial for ecological balance, but wildfires, a major cause of forest loss, pose significant risks. Fire weather indices, which assess wildfire risk and predict resource demands, are vital. With the rise of sensor networks in fields like healthcare and environmental monitoring, semantic sensor networks are increasingly used to gather climatic data such as wind speed, temperature, and humidity. However, processing these data streams to determine fire weather indices presents challenges, underscoring the growing importance of effective forest fire detection. This paper discusses using Apache Spark for early forest fire detection, enhancing fire risk prediction with meteorological and geographical data. Building on our previous development of Semantic Sensor Network (SSN) ontologies and Semantic Web Rules Language (SWRL) for managing forest fires in Monesterial Natural Park, we expanded SWRL to improve a Decision Support System (DSS) using a Large Language Models (LLMs) and Spark framework. We implemented real-time alerts with Spark streaming, tailored to various fire scenarios, and validated our approach using ontology metrics, query-based evaluations, LLMs score precision, F1 score, and recall measures.
Semantic rule Web-based Diagnosis and Treatment of Vector-Borne Diseases using SWRL rules
Chandra, Ritesh, Tiwari, Sadhana, Agarwal, Sonali, Singh, Navjot
Vector-borne diseases (VBDs) are a kind of infection caused through the transmission of vectors generated by the bites of infected parasites, bacteria, and viruses, such as ticks, mosquitoes, triatomine bugs, blackflies, and sandflies. If these diseases are not properly treated within a reasonable time frame, the mortality rate may rise. In this work, we propose a set of ontologies that will help in the diagnosis and treatment of vector-borne diseases. For developing VBD's ontology, electronic health records taken from the Indian Health Records website, text data generated from Indian government medical mobile applications, and doctors' prescribed handwritten notes of patients are used as input. This data is then converted into correct text using Optical Character Recognition (OCR) and a spelling checker after pre-processing. Natural Language Processing (NLP) is applied for entity extraction from text data for making Resource Description Framework (RDF) medical data with the help of the Patient Clinical Data (PCD) ontology. Afterwards, Basic Formal Ontology (BFO), National Vector Borne Disease Control Program (NVBDCP) guidelines, and RDF medical data are used to develop ontologies for VBDs, and Semantic Web Rule Language (SWRL) rules are applied for diagnosis and treatment. The developed ontology helps in the construction of decision support systems (DSS) for the NVBDCP to control these diseases.
Forecasting COVID- 19 cases using Statistical Models and Ontology-based Semantic Modelling: A real time data analytics approach
Tiwari, Sadhana, Chandra, Ritesh, Agarwal, Sonali
SARS-COV-19 is the most prominent issue which many countries face today. The frequent changes in infections, recovered and deaths represents the dynamic nature of this pandemic. It is very crucial to predict the spreading rate of this virus for accurate decision making against fighting with the situation of getting infected through the virus, tracking and controlling the virus transmission in the community. We develop a prediction model using statistical time series models such as SARIMA and FBProphet to monitor the daily active, recovered and death cases of COVID-19 accurately. Then with the help of various details across each individual patient (like height, weight, gender etc.), we designed a set of rules using Semantic Web Rule Language and some mathematical models for dealing with COVID-19 infected cases on an individual basis. After combining all the models, a COVID-19 Ontology is developed and performs various queries using SPARQL query on designed Ontology which accumulate the risk factors, provide appropriate diagnosis, precautions and preventive suggestions for COVID Patients. After comparing the performance of SARIMA and FBProphet, it is observed that the SARIMA model performs better in forecasting of COVID cases.
Semantic Sensor Network Ontology based Decision Support System for Forest Fire Management
Chandra, Ritesh, Abhishek, Kumar, Agarwal, Sonali, Singh, Navjot
The forests are significant assets for every country. When it gets destroyed, it may negatively impact the environment, and forest fire is one of the primary causes. Fire weather indices are widely used to measure fire danger and are used to issue bushfire warnings. It can also be used to predict the demand for emergency management resources. Sensor networks have grown in popularity in data collection and processing capabilities for a variety of applications in industries such as medical, environmental monitoring, home automation etc. Semantic sensor networks can collect various climatic circumstances like wind speed, temperature, and relative humidity. However, estimating fire weather indices is challenging due to the various issues involved in processing the data streams generated by the sensors. Hence, the importance of forest fire detection has increased day by day. The underlying Semantic Sensor Network (SSN) ontologies are built to allow developers to create rules for calculating fire weather indices and also the convert dataset into Resource Description Framework (RDF). This research describes the various steps involved in developing rules for calculating fire weather indices. Besides, this work presents a Web-based mapping interface to help users visualize the changes in fire weather indices over time. With the help of the inference rule, it designed a decision support system using the SSN ontology and query on it through SPARQL. The proposed fire management system acts according to the situation, supports reasoning and the general semantics of the open-world followed by all the ontologies