Not enough data to create a plot.
Try a different view from the menu above.
Chalvatzaki, Georgia
Placing by Touching: An empirical study on the importance of tactile sensing for precise object placing
Lach, Luca, Funk, Niklas, Haschke, Robert, Lemaignan, Severin, Ritter, Helge Joachim, Peters, Jan, Chalvatzaki, Georgia
This work deals with a practical everyday problem: stable object placement on flat surfaces starting from unknown initial poses. Common object-placing approaches require either complete scene specifications or extrinsic sensor measurements, e.g., cameras, that occasionally suffer from occlusions. We propose a novel approach for stable object placing that combines tactile feedback and proprioceptive sensing. We devise a neural architecture that estimates a rotation matrix, resulting in a corrective gripper movement that aligns the object with the placing surface for the subsequent object manipulation. We compare models with different sensing modalities, such as force-torque and an external motion capture system, in real-world object placing tasks with different objects. The experimental evaluation of our placing policies with a set of unseen everyday objects reveals significant generalization of our proposed pipeline, suggesting that tactile sensing plays a vital role in the intrinsic understanding of robotic dexterous object manipulation. Code, models, and supplementary videos are available at https://sites.google.com/view/placing-by-touching.
Learning Multimodal Latent Dynamics for Human-Robot Interaction
Prasad, Vignesh, Heitlinger, Lea, Koert, Dorothea, Stock-Homburg, Ruth, Peters, Jan, Chalvatzaki, Georgia
This article presents a method for learning well-coordinated Human-Robot Interaction (HRI) from Human-Human Interactions (HHI). We devise a hybrid approach using Hidden Markov Models (HMMs) as the latent space priors for a Variational Autoencoder to model a joint distribution over the interacting agents. We leverage the interaction dynamics learned from HHI to learn HRI and incorporate the conditional generation of robot motions from human observations into the training, thereby predicting more accurate robot trajectories. The generated robot motions are further adapted with Inverse Kinematics to ensure the desired physical proximity with a human, combining the ease of joint space learning and accurate task space reachability. For contact-rich interactions, we modulate the robot's stiffness using HMM segmentation for a compliant interaction. We verify the effectiveness of our approach deployed on a Humanoid robot via a user study. Our method generalizes well to various humans despite being trained on data from just two humans. We find that Users perceive our method as more human-like, timely, and accurate and rank our method with a higher degree of preference over other baselines.
Domain Randomization via Entropy Maximization
Tiboni, Gabriele, Klink, Pascal, Peters, Jan, Tommasi, Tatiana, D'Eramo, Carlo, Chalvatzaki, Georgia
Varying dynamics parameters in simulation is a popular Domain Randomization (DR) approach for overcoming the reality gap in Reinforcement Learning (RL). Nevertheless, DR heavily hinges on the choice of the sampling distribution of the dynamics parameters, since high variability is crucial to regularize the agent's behavior but notoriously leads to overly conservative policies when randomizing excessively. In this paper, we propose a novel approach to address sim-to-real transfer, which automatically shapes dynamics distributions during training in simulation without requiring real-world data. We introduce DOmain RAndomization via Entropy MaximizatiON (DORAEMON), a constrained optimization problem that directly maximizes the entropy of the training distribution while retaining generalization capabilities. In achieving this, DORAEMON gradually increases the diversity of sampled dynamics parameters as long as the probability of success of the current policy is sufficiently high. We empirically validate the consistent benefits of DORAEMON in obtaining highly adaptive and generalizable policies, i.e. solving the task at hand across the widest range of dynamics parameters, as opposed to representative baselines from the DR literature. Notably, we also demonstrate the Sim2Real applicability of DORAEMON through its successful zero-shot transfer in a robotic manipulation setup under unknown real-world parameters.
Robust Adversarial Reinforcement Learning via Bounded Rationality Curricula
Reddi, Aryaman, Tรถlle, Maximilian, Peters, Jan, Chalvatzaki, Georgia, D'Eramo, Carlo
Robustness against adversarial attacks and distribution shifts is a long-standing goal of Reinforcement Learning (RL). To this end, Robust Adversarial Reinforcement Learning (RARL) trains a protagonist against destabilizing forces exercised by an adversary in a competitive zero-sum Markov game, whose optimal solution, i.e., rational strategy, corresponds to a Nash equilibrium. However, finding Nash equilibria requires facing complex saddle point optimization problems, which can be prohibitive to solve, especially for high-dimensional control. In this paper, we propose a novel approach for adversarial RL based on entropy regularization to ease the complexity of the saddle point optimization problem. We show that the solution of this entropy-regularized problem corresponds to a Quantal Response Equilibrium (QRE), a generalization of Nash equilibria that accounts for bounded rationality, i.e., agents sometimes play random actions instead of optimal ones. Crucially, the connection between the entropy-regularized objective and QRE enables free modulation of the rationality of the agents by simply tuning the temperature coefficient. We leverage this insight to propose our novel algorithm, Quantal Adversarial RL (QARL), which gradually increases the rationality of the adversary in a curriculum fashion until it is fully rational, easing the complexity of the optimization problem while retaining robustness. We provide extensive evidence of QARL outperforming RARL and recent baselines across several MuJoCo locomotion and navigation problems in overall performance and robustness.
Accelerating Motion Planning via Optimal Transport
Le, An T., Chalvatzaki, Georgia, Biess, Armin, Peters, Jan
Motion planning is still an open problem for many disciplines, e.g., robotics, autonomous driving, due to their need for high computational resources that hinder real-time, efficient decision-making. A class of methods striving to provide smooth solutions is gradient-based trajectory optimization. However, those methods usually suffer from bad local minima, while for many settings, they may be inapplicable due to the absence of easy-to-access gradients of the optimization objectives. In response to these issues, we introduce Motion Planning via Optimal Transport (MPOT) -- a \textit{gradient-free} method that optimizes a batch of smooth trajectories over highly nonlinear costs, even for high-dimensional tasks, while imposing smoothness through a Gaussian Process dynamics prior via the planning-as-inference perspective. To facilitate batch trajectory optimization, we introduce an original zero-order and highly-parallelizable update rule: the Sinkhorn Step, which uses the regular polytope family for its search directions. Each regular polytope, centered on trajectory waypoints, serves as a local cost-probing neighborhood, acting as a \textit{trust region} where the Sinkhorn Step "transports" local waypoints toward low-cost regions. We theoretically show that Sinkhorn Step guides the optimizing parameters toward local minima regions of non-convex objective functions. We then show the efficiency of MPOT in a range of problems from low-dimensional point-mass navigation to high-dimensional whole-body robot motion planning, evincing its superiority compared to popular motion planners, paving the way for new applications of optimal transport in motion planning.
Active-Perceptive Motion Generation for Mobile Manipulation
Jauhri, Snehal, Lueth, Sophie, Chalvatzaki, Georgia
Mobile Manipulation (MoMa) systems incorporate the benefits of mobility and dexterity, thanks to the enlarged space in which they can move and interact with their environment. MoMa robots can also continuously perceive their environment when equipped with onboard sensors, e.g., an embodied camera. However, extracting task-relevant visual information in unstructured and cluttered environments such as households remains a challenge. In this work, we introduce an active perception pipeline for mobile manipulators to generate motions that are informative toward manipulation tasks such as grasping, in initially unknown, cluttered scenes. Our proposed approach ActPerMoMa generates robot trajectories in a receding horizon fashion, sampling trajectories and computing path-wise utilities that trade-off reconstructing the unknown scene by maximizing the visual information gain and the taskoriented objective, e.g., grasp success by maximizing grasp reachability efficiently. We demonstrate the efficacy of our method in simulated experiments with a dual-arm TIAGo++ MoMa robot performing mobile grasping in cluttered scenes and when its path is obstructed by external obstacles. We empirically analyze the contribution of various utilities and hyperparameters, and compare against representative baselines both with and without active perception objectives. Finally, we demonstrate the transfer of our mobile grasping strategy to the real world, showing a promising direction for active-perceptive MoMa.
Learning Any-View 6DoF Robotic Grasping in Cluttered Scenes via Neural Surface Rendering
Jauhri, Snehal, Lunawat, Ishikaa, Chalvatzaki, Georgia
Robotic manipulation is crucial in various applications, like industrial automation, assistive robots, etc. A key component for manipulation is effective 6DoF grasping in cluttered environments, as this ability would enhance the efficiency, versatility, and autonomy of robotic systems operating in unstructured environments. Grasping effectively with limited sensory input reduces the need for extensive exploration and multiple viewpoints, enabling efficient and time-saving solutions to robotic applications. Robotic grasping involves generating suitable poses for the robot's end-effector given some sensory information (e.g., visual data). While planar bin picking, i.e., top-down 4DoF grasping (3D position and roll orientation) with two-fingered or suction grippers, has mainly been solved thanks to deep learning models [1-4], 6DoF grasping in the wild, i.e., grasping in the SE(3) space of 3D positions and 3D rotations from any viewpoint remains a challenge [5, 6]. Embodied AI agents, e.g., mobile manipulation robots [7, 8], are expected to perform manipulation tasks similar to humans; humans can leverage geometric information from limited views and mental models to grasp objects without exploring to reconstruct the scene. Such an elaborate plan for grasping in open spaces with clutter would require that robots, given some spatial sensory information, e.g., 3D pointcloud data, can reconstruct the scene, understand the graspable area of different objects, and finally select grasps that are highly likely to succeed, both in terms of lifting an object for a subsequent manipulation task, but crucially, without colliding and potentially damaging the surrounding environment.
SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp and motion optimization through diffusion
Urain, Julen, Funk, Niklas, Peters, Jan, Chalvatzaki, Georgia
Multi-objective optimization problems are ubiquitous in robotics, e.g., the optimization of a robot manipulation task requires a joint consideration of grasp pose configurations, collisions and joint limits. While some demands can be easily hand-designed, e.g., the smoothness of a trajectory, several task-specific objectives need to be learned from data. This work introduces a method for learning data-driven SE(3) cost functions as diffusion models. Diffusion models can represent highly-expressive multimodal distributions and exhibit proper gradients over the entire space due to their score-matching training objective. Learning costs as diffusion models allows their seamless integration with other costs into a single differentiable objective function, enabling joint gradient-based motion optimization. In this work, we focus on learning SE(3) diffusion models for 6DoF grasping, giving rise to a novel framework for joint grasp and motion optimization without needing to decouple grasp selection from trajectory generation. We evaluate the representation power of our SE(3) diffusion models w.r.t. classical generative models, and we showcase the superior performance of our proposed optimization framework in a series of simulated and real-world robotic manipulation tasks against representative baselines.
Entropy-driven Unsupervised Keypoint Representation Learning in Videos
Younes, Ali, Schaub-Meyer, Simone, Chalvatzaki, Georgia
Extracting informative representations from videos is fundamental for effectively learning various downstream tasks. We present a novel approach for unsupervised learning of meaningful representations from videos, leveraging the concept of image spatial entropy (ISE) that quantifies the per-pixel information in an image. We argue that \textit{local entropy} of pixel neighborhoods and their temporal evolution create valuable intrinsic supervisory signals for learning prominent features. Building on this idea, we abstract visual features into a concise representation of keypoints that act as dynamic information transmitters, and design a deep learning model that learns, purely unsupervised, spatially and temporally consistent representations \textit{directly} from video frames. Two original information-theoretic losses, computed from local entropy, guide our model to discover consistent keypoint representations; a loss that maximizes the spatial information covered by the keypoints and a loss that optimizes the keypoints' information transportation over time. We compare our keypoint representation to strong baselines for various downstream tasks, \eg, learning object dynamics. Our empirical results show superior performance for our information-driven keypoints that resolve challenges like attendance to static and dynamic objects or objects abruptly entering and leaving the scene.
Hierarchical Policy Blending as Inference for Reactive Robot Control
Hansel, Kay, Urain, Julen, Peters, Jan, Chalvatzaki, Georgia
Motion generation in cluttered, dense, and dynamic environments is a central topic in robotics, rendered as a multi-objective decision-making problem. Current approaches trade-off between safety and performance. On the one hand, reactive policies guarantee fast response to environmental changes at the risk of suboptimal behavior. On the other hand, planning-based motion generation provides feasible trajectories, but the high computational cost may limit the control frequency and thus safety. To combine the benefits of reactive policies and planning, we propose a hierarchical motion generation method. Moreover, we adopt probabilistic inference methods to formalize the hierarchical model and stochastic optimization. We realize this approach as a weighted product of stochastic, reactive expert policies, where planning is used to adaptively compute the optimal weights over the task horizon. This stochastic optimization avoids local optima and proposes feasible reactive plans that find paths in cluttered and dense environments. Our extensive experimental study in planar navigation and 6DoF manipulation shows that our proposed hierarchical motion generation method outperforms both myopic reactive controllers and online re-planning methods.