Chakraborty, Souvik
Geometry adaptive waveformer for cardio-vascular modeling
N, Navaneeth, Chakraborty, Souvik
Modeling cardiovascular anatomies poses a significant challenge due to their complex, irregular structures and inherent pathological conditions. Numerical simulations, while accurate, are often computationally expensive, limiting their practicality in clinical settings. Traditional machine learning methods, on the other hand, often struggle with some major hurdles, including high dimensionality of the inputs, inability to effectively work with irregular grids, and preserving the time dependencies of responses in dynamic problems. In response to these challenges, we propose a geometry adaptive waveformer model to predict blood flow dynamics in the cardiovascular system. The framework is primarily composed of three components: a geometry encoder, a geometry decoder, and a waveformer. The encoder transforms input defined on the irregular domain to a regular domain using a graph operator-based network and signed distance functions. The waveformer operates on the transformed field on the irregular grid. Finally, the decoder reverses this process, transforming the output from the regular grid back to the physical space. We evaluate the efficacy of the approach on different sets of cardiovascular data.
Deep Muscle EMG construction using A Physics-Integrated Deep Learning approach
Kumar, Rajnish, Tripura, Tapas, Chakraborty, Souvik, Roy, Sitikantha
Electromyography (EMG)--based computational musculoskeletal modeling is a non-invasive method for studying musculotendon function, human movement, and neuromuscular control, providing estimates of internal variables like muscle forces and joint torques. However, EMG signals from deeper muscles are often challenging to measure by placing the surface EMG electrodes and unfeasible to measure directly using invasive methods. The restriction to the access of EMG data from deeper muscles poses a considerable obstacle to the broad adoption of EMG-driven modeling techniques. A strategic alternative is to use an estimation algorithm to approximate the missing EMG signals from deeper muscle. A similar strategy is used in physics-informed deep learning, where the features of physical systems are learned without labeled data. In this work, we propose a hybrid deep learning algorithm, namely the neural musculoskeletal model (NMM), that integrates physics-informed and data-driven deep learning to approximate the EMG signals from the deeper muscles. While data-driven modeling is used to predict the missing EMG signals, physics-based modeling engraves the subject-specific information into the predictions. Experimental verifications on five test subjects are carried out to investigate the performance of the proposed hybrid framework. The proposed NMM is validated against the joint torque computed from 'OpenSim' software. The predicted deep EMG signals are also compared against the state-of-the-art muscle synergy extrapolation (MSE) approach, where the proposed NMM completely outperforms the existing MSE framework by a significant margin.
A Bayesian Approach for Discovering Time- Delayed Differential Equation from Data
Chowdhury, Debangshu, Chakraborty, Souvik
Time-delayed differential equations (TDDEs) are widely used to model complex dynamic systems where future states depend on past states with a delay. However, inferring the underlying TDDEs from observed data remains a challenging problem due to the inherent nonlinearity, uncertainty, and noise in real-world systems. Conventional equation discovery methods often exhibit limitations when dealing with large time delays, relying on deterministic techniques or optimization-based approaches that may struggle with scalability and robustness. In this paper, we present BayTiDe - Bayesian Approach for Discovering Time-Delayed Differential Equations from Data, that is capable of identifying arbitrarily large values of time delay to an accuracy that is directly proportional to the resolution of the data input to it. BayTiDe leverages Bayesian inference combined with a sparsity-promoting discontinuous spike-and-slab prior to accurately identify time-delayed differential equations. The approach accommodates arbitrarily large time delays with accuracy proportional to the input data resolution, while efficiently narrowing the search space to achieve significant computational savings. We demonstrate the efficiency and robustness of BayTiDe through a range of numerical examples, validating its ability to recover delayed differential equations from noisy data.
Hybrid variable spiking graph neural networks for energy-efficient scientific machine learning
Jain, Isha, Garg, Shailesh, Shriyam, Shaurya, Chakraborty, Souvik
Graph-based representations for samples of computational mechanics-related datasets can prove instrumental when dealing with problems like irregular domains or molecular structures of materials, etc. To effectively analyze and process such datasets, deep learning offers Graph Neural Networks (GNNs) that utilize techniques like message-passing within their architecture. The issue, however, is that as the individual graph scales and/ or GNN architecture becomes increasingly complex, the increased energy budget of the overall deep learning model makes it unsustainable and restricts its applications in applications like edge computing. To overcome this, we propose in this paper Hybrid Variable Spiking Graph Neural Networks (HVS-GNNs) that utilize Variable Spiking Neurons (VSNs) within their architecture to promote sparse communication and hence reduce the overall energy budget. VSNs, while promoting sparse event-driven computations, also perform well for regression tasks, which are often encountered in computational mechanics applications and are the main target of this paper. Three examples dealing with prediction of mechanical properties of material based on microscale/ mesoscale structures are shown to test the performance of the proposed HVS-GNNs in regression tasks. We have also compared the performance of HVS-GNN architectures with the performance of vanilla GNNs and GNNs utilizing leaky integrate and fire neurons. The results produced show that HVS-GNNs perform well for regression tasks, all while promoting sparse communication and, hence, energy efficiency.
Distribution free uncertainty quantification in neuroscience-inspired deep operators
Garg, Shailesh, Chakraborty, Souvik
Energy-efficient deep learning algorithms are essential for a sustainable future and feasible edge computing setups. Spiking neural networks (SNNs), inspired from neuroscience, are a positive step in the direction of achieving the required energy efficiency. However, in a bid to lower the energy requirements, accuracy is marginally sacrificed. Hence, predictions of such deep learning algorithms require an uncertainty measure that can inform users regarding the bounds of a certain output. In this paper, we introduce the Conformalized Randomized Prior Operator (CRP-O) framework that leverages Randomized Prior (RP) networks and Split Conformal Prediction (SCP) to quantify uncertainty in both conventional and spiking neural operators. To further enable zero-shot super-resolution in UQ, we propose an extension incorporating Gaussian Process Regression. This enhanced super-resolution-enabled CRP-O framework is integrated with the recently developed Variable Spiking Wavelet Neural Operator (VSWNO). To test the performance of the obtained calibrated uncertainty bounds, we discuss four different examples covering both one-dimensional and two-dimensional partial differential equations. Results demonstrate that the uncertainty bounds produced by the conformalized RP-VSWNO significantly enhance UQ estimates compared to vanilla RP-VSWNO, Quantile WNO (Q-WNO), and Conformalized Quantile WNO (CQ-WNO). These findings underscore the potential of the proposed approach for practical applications.
G$^{2}$TR: Generalized Grounded Temporal Reasoning for Robot Instruction Following by Combining Large Pre-trained Models
Arora, Riya, Narendranath, Niveditha, Tambi, Aman, Zachariah, Sandeep S., Chakraborty, Souvik, Paul, Rohan
Consider the scenario where a human cleans a table and a robot observing the scene is instructed with the task "Remove the cloth using which I wiped the table". Instruction following with temporal reasoning requires the robot to identify the relevant past object interaction, ground the object of interest in the present scene, and execute the task according to the human's instruction. Directly grounding utterances referencing past interactions to grounded objects is challenging due to the multi-hop nature of references to past interactions and large space of object groundings in a video stream observing the robot's workspace. Our key insight is to factor the temporal reasoning task as (i) estimating the video interval associated with event reference, (ii) performing spatial reasoning over the interaction frames to infer the intended object (iii) semantically track the object's location till the current scene to enable future robot interactions. Our approach leverages existing large pre-trained models (which possess inherent generalization capabilities) and combines them appropriately for temporal grounding tasks. Evaluation on a video-language corpus acquired with a robot manipulator displaying rich temporal interactions in spatially-complex scenes displays an average accuracy of 70.10%. The dataset, code, and videos are available at https://reail-iitdelhi.github.io/temporalreasoning.github.io/ .
Discovering governing equation in structural dynamics from acceleration-only measurements
Alvares, Calvin, Chakraborty, Souvik
Over the past few years, equation discovery has gained popularity in different fields of science and engineering. However, existing equation discovery algorithms rely on the availability of noisy measurements of the state variables (i.e., displacement {and velocity}). This is a major bottleneck in structural dynamics, where we often only have access to acceleration measurements. To that end, this paper introduces a novel equation discovery algorithm for discovering governing equations of dynamical systems from acceleration-only measurements. The proposed algorithm employs a library-based approach for equation discovery. To enable equation discovery from acceleration-only measurements, we propose a novel Approximate Bayesian Computation (ABC) model that prioritizes parsimonious models. The efficacy of the proposed algorithm is illustrated using {four} structural dynamics examples that include both linear and nonlinear dynamical systems. The case studies presented illustrate the possible application of the proposed approach for equation discovery of dynamical systems from acceleration-only measurements.
Generative flow induced neural architecture search: Towards discovering optimal architecture in wavelet neural operator
Soin, Hartej, Tripura, Tapas, Chakraborty, Souvik
We propose a generative flow-induced neural architecture search algorithm. The proposed approach devices simple feed-forward neural networks to learn stochastic policies to generate sequences of architecture hyperparameters such that the generated states are in proportion with the reward from the terminal state. We demonstrate the efficacy of the proposed search algorithm on the wavelet neural operator (WNO), where we learn a policy to generate a sequence of hyperparameters like wavelet basis and activation operators for wavelet integral blocks. While the trajectory of the generated wavelet basis and activation sequence is cast as flow, the policy is learned by minimizing the flow violation between each state in the trajectory and maximizing the reward from the terminal state. In the terminal state, we train WNO simultaneously to guide the search. We propose to use the exponent of the negative of the WNO loss on the validation dataset as the reward function. While the grid search-based neural architecture generation algorithms foresee every combination, the proposed framework generates the most probable sequence based on the positive reward from the terminal state, thereby reducing exploration time. Compared to reinforcement learning schemes, where complete episodic training is required to get the reward, the proposed algorithm generates the hyperparameter trajectory sequentially. Through four fluid mechanics-oriented problems, we illustrate that the learned policies can sample the best-performing architecture of the neural operator, thereby improving the performance of the vanilla wavelet neural operator.
MD-NOMAD: Mixture density nonlinear manifold decoder for emulating stochastic differential equations and uncertainty propagation
Thakur, Akshay, Chakraborty, Souvik
We propose a neural operator framework, termed mixture density nonlinear manifold decoder (MD-NOMAD), for stochastic simulators. Our approach leverages an amalgamation of the pointwise operator learning neural architecture nonlinear manifold decoder (NOMAD) with mixture density-based methods to estimate conditional probability distributions for stochastic output functions. MD-NOMAD harnesses the ability of probabilistic mixture models to estimate complex probability and the high-dimensional scalability of pointwise neural operator NOMAD. We conduct empirical assessments on a wide array of stochastic ordinary and partial differential equations and present the corresponding results, which highlight the performance of the proposed framework.
Neural Operator induced Gaussian Process framework for probabilistic solution of parametric partial differential equations
Kumar, Sawan, Nayek, Rajdip, Chakraborty, Souvik
The study of neural operators has paved the way for the development of efficient approaches for solving partial differential equations (PDEs) compared with traditional methods. However, most of the existing neural operators lack the capability to provide uncertainty measures for their predictions, a crucial aspect, especially in data-driven scenarios with limited available data. In this work, we propose a novel Neural Operator-induced Gaussian Process (NOGaP), which exploits the probabilistic characteristics of Gaussian Processes (GPs) while leveraging the learning prowess of operator learning. The proposed framework leads to improved prediction accuracy and offers a quantifiable measure of uncertainty. The proposed framework is extensively evaluated through experiments on various PDE examples, including Burger's equation, Darcy flow, non-homogeneous Poisson, and wave-advection equations. Furthermore, a comparative study with state-of-the-art operator learning algorithms is presented to highlight the advantages of NOGaP. The results demonstrate superior accuracy and expected uncertainty characteristics, suggesting the promising potential of the proposed framework.