Chakraborty, Amit
Using Parametric PINNs for Predicting Internal and External Turbulent Flows
Ghosh, Shinjan, Chakraborty, Amit, Brikis, Georgia Olympia, Dey, Biswadip
Computational fluid dynamics (CFD) solvers employing two-equation eddy viscosity models are the industry standard for simulating turbulent flows using the Reynolds-averaged Navier-Stokes (RANS) formulation. While these methods are computationally less expensive than direct numerical simulations, they can still incur significant computational costs to achieve the desired accuracy. In this context, physics-informed neural networks (PINNs) offer a promising approach for developing parametric surrogate models that leverage both existing, but limited CFD solutions and the governing differential equations to predict simulation outcomes in a computationally efficient, differentiable, and near real-time manner. In this work, we build upon the previously proposed RANS-PINN framework, which only focused on predicting flow over a cylinder. To investigate the efficacy of RANS-PINN as a viable approach to building parametric surrogate models, we investigate its accuracy in predicting relevant turbulent flow variables for both internal and external flows. To ensure training convergence with a more complex loss function, we adopt a novel sampling approach that exploits the domain geometry to ensure a proper balance among the contributions from various regions within the solution domain. The effectiveness of this framework is then demonstrated for two scenarios that represent a broad class of internal and external flow problems.
An Operator Learning Framework for Spatiotemporal Super-resolution of Scientific Simulations
Duruisseaux, Valentin, Chakraborty, Amit
In numerous contexts, high-resolution solutions to partial differential equations are required to capture faithfully essential dynamics which occur at small spatiotemporal scales, but these solutions can be very difficult and slow to obtain using traditional methods due to limited computational resources. A recent direction to circumvent these computational limitations is to use machine learning techniques for super-resolution, to reconstruct high-resolution numerical solutions from low-resolution simulations which can be obtained more efficiently. The proposed approach, the Super Resolution Operator Network (SROpNet), frames super-resolution as an operator learning problem and draws inspiration from existing architectures to learn continuous representations of solutions to parametric differential equations from low-resolution approximations, which can then be evaluated at any desired location. In addition, no restrictions are imposed on the locations of (the fixed number of) spatiotemporal sensors at which the low-resolution approximations are provided, thereby enabling the consideration of a broader spectrum of problems arising in practice, for which many existing super-resolution approaches are not well-suited.
RANS-PINN based Simulation Surrogates for Predicting Turbulent Flows
Ghosh, Shinjan, Chakraborty, Amit, Brikis, Georgia Olympia, Dey, Biswadip
Physics-informed neural networks (PINNs) provide a framework to build surrogate models for dynamical systems governed by differential equations. During the learning process, PINNs incorporate a physics-based regularization term within the loss function to enhance generalization performance. Since simulating dynamics controlled by partial differential equations (PDEs) can be computationally expensive, PINNs have gained popularity in learning parametric surrogates for fluid flow problems governed by Navier-Stokes equations. In this work, we introduce RANS-PINN, a modified PINN framework, to predict flow fields (i.e., velocity and pressure) in high Reynolds number turbulent flow regimes. To account for the additional complexity introduced by turbulence, RANS-PINN employs a 2-equation eddy viscosity model based on a Reynolds-averaged Navier-Stokes (RANS) formulation. Furthermore, we adopt a novel training approach that ensures effective initialization and balance among the various components of the loss function. The effectiveness of the RANS-PINN framework is then demonstrated using a parametric PINN.
A Neural ODE Interpretation of Transformer Layers
Zhong, Yaofeng Desmond, Zhang, Tongtao, Chakraborty, Amit, Dey, Biswadip
Transformer layers, which use an alternating pattern of multi-head attention and multi-layer perceptron (MLP) layers, provide an effective tool for a variety of machine learning problems. As the transformer layers use residual connections to avoid the problem of vanishing gradients, they can be viewed as the numerical integration of a differential equation. In this extended abstract, we build upon this connection and propose a modification of the internal architecture of a transformer layer. The proposed model places the multi-head attention sublayer and the MLP sublayer parallel to each other. Our experiments show that this simple modification improves the performance of transformer networks in multiple tasks. Moreover, for the image classification task, we show that using neural ODE solvers with a sophisticated integration scheme further improves performance.
Physics-informed neural networks for modeling rate- and temperature-dependent plasticity
Arora, Rajat, Kakkar, Pratik, Dey, Biswadip, Chakraborty, Amit
This work presents a physics-informed neural network (PINN) based framework to model the strain-rate and temperature dependence of the deformation fields in elastic-viscoplastic solids. To avoid unbalanced back-propagated gradients during training, the proposed framework uses a simple strategy with no added computational complexity for selecting scalar weights that balance the interplay between different terms in the physics-based loss function. In addition, we highlight a fundamental challenge involving the selection of appropriate model outputs so that the mechanical problem can be faithfully solved using a PINN-based approach. We demonstrate the effectiveness of this approach by studying two test problems modeling the elastic-viscoplastic deformation in solids at different strain rates and temperatures, respectively. Our results show that the proposed PINN-based approach can accurately predict the spatio-temporal evolution of deformation in elastic-viscoplastic materials.
A Decentralized Reinforcement Learning Framework for Efficient Passage of Emergency Vehicles
Su, Haoran, Zhong, Yaofeng Desmond, Dey, Biswadip, Chakraborty, Amit
Emergency vehicles (EMVs) play a critical role in a city's response to time-critical events such as medical emergencies and fire outbreaks. The existing approaches to reduce EMV travel time employ route optimization and traffic signal pre-emption without accounting for the coupling between route these two subproblems. As a result, the planned route often becomes suboptimal. In addition, these approaches also do not focus on minimizing disruption to the overall traffic flow. To address these issues, we introduce EMVLight in this paper. This is a decentralized reinforcement learning (RL) framework for simultaneous dynamic routing and traffic signal control. EMVLight extends Dijkstra's algorithm to efficiently update the optimal route for an EMV in real-time as it travels through the traffic network. Consequently, the decentralized RL agents learn network-level cooperative traffic signal phase strategies that reduce EMV travel time and the average travel time of non-EMVs in the network. We have carried out comprehensive experiments with synthetic and real-world maps to demonstrate this benefit. Our results show that EMVLight outperforms benchmark transportation engineering techniques as well as existing RL-based traffic signal control methods.
A Differentiable Contact Model to Extend Lagrangian and Hamiltonian Neural Networks for Modeling Hybrid Dynamics
Zhong, Yaofeng Desmond, Dey, Biswadip, Chakraborty, Amit
The incorporation of appropriate inductive bias plays a critical role in learning dynamics from data. A growing body of work has been exploring ways to enforce energy conservation in the learned dynamics by incorporating Lagrangian or Hamiltonian dynamics into the design of the neural network architecture. However, these existing approaches are based on differential equations, which does not allow discontinuity in the states, and thereby limits the class of systems one can learn. Real systems, such as legged robots and robotic manipulators, involve contacts and collisions, which introduce discontinuities in the states. In this paper, we introduce a differentiable contact model, which can capture contact mechanics, both frictionless and frictional, as well as both elastic and inelastic. This model can also accommodate inequality constraints, such as limits on the joint angles. The proposed contact model extends the scope of Lagrangian and Hamiltonian neural networks by allowing simultaneous learning of contact properties and system properties. We demonstrate this framework on a series of challenging 2D and 3D physical systems with different coefficients of restitution and friction.
Benchmarking Energy-Conserving Neural Networks for Learning Dynamics from Data
Zhong, Yaofeng Desmond, Dey, Biswadip, Chakraborty, Amit
The last few years have witnessed an increased interest in incorporating physics-informed inductive bias in deep learning frameworks. In particular, a growing volume of literature has been exploring ways to enforce energy conservation while using neural networks for learning dynamics from observed time-series data. In this work, we present a comparative analysis of the energy-conserving neural networks - for example, deep Lagrangian network, Hamiltonian neural network, etc. - wherein the underlying physics is encoded in their computation graph. We focus on ten neural network models and explain the similarities and differences between the models. We compare their performance in 4 different physical systems. Our result highlights that using a high-dimensional coordinate system and then imposing restrictions via explicit constraints can lead to higher accuracy in the learned dynamics. We also point out the possibility of leveraging some of these energy-conserving models to design energy-based controllers.
A Conditional Generative Model for Predicting Material Microstructures from Processing Methods
Iyer, Akshay, Dey, Biswadip, Dasgupta, Arindam, Chen, Wei, Chakraborty, Amit
Microstructures of a material form the bridge linking processing conditions - which can be controlled, to the material property - which is the primary interest in engineering applications. Thus a critical task in material design is establishing the processing-structure relationship, which requires domain expertise and techniques that can model the high-dimensional material microstructure. This work proposes a deep learning based approach that models the processing-structure relationship as a conditional image synthesis problem. In particular, we develop an auxiliary classifier Wasserstein GAN with gradient penalty (ACWGAN-GP) to synthesize microstructures under a given processing condition. This approach is free of feature engineering, requires modest domain knowledge and is applicable to a wide range of material systems. We demonstrate this approach using the ultra high carbon steel (UHCS) database, where each microstructure is annotated with a label describing the cooling method it was subjected to. Our results show that ACWGAN-GP can synthesize high-quality multiphase microstructures for a given cooling method.
Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control
Zhong, Yaofeng Desmond, Dey, Biswadip, Chakraborty, Amit
In this paper, we introduce Symplectic ODE-Net (SymODEN), a deep learning framework which can infer the dynamics of a physical system from observed state trajectories. To achieve better generalization with fewer training samples, SymODEN incorporates appropriate inductive bias by designing the associated computation graph in a physics-informed manner. In particular, we enforce Hamiltonian dynamics with control to learn the underlying dynamics in a transparent way which can then be leveraged to draw insight about relevant physical aspects of the system, such as mass and potential energy. In addition, we propose a parametrization which can enforce this Hamiltonian formalism even when the generalized coordinate data is embedded in a high-dimensional space or we can only access velocity data instead of generalized momentum. This framework, by offering interpretable, physically-consistent models for physical systems, opens up new possibilities for synthesizing model-based control strategies. In the recent years, deep neural networks (Goodfellow et al., 2016) have become very accurate and widely-used in many application domains, such as image recognition (He et al., 2016), language comprehension (Devlin et al., 2019), and sequential decision making (Silver et al., 2017). To learn underlying patterns from data and enable generalization beyond the training set, the learning approach incorporates appropriate inductive bias (Haussler, 1988; Baxter, 2000) by promoting representations which are simple in some sense. It typically manifests itself via a set of assumptions which in turn can guide a learning algorithm to pick one hypothesis over another. The success in predicting an outcome for previously unseen data then depends on how well the inductive bias captures the ground reality. Inductive bias can be introduced as the prior in a Bayesian model, or via the choice of computation graphs in a neural network.