Chakrabarty, Deeparnab
Monotonicity Testing of High-Dimensional Distributions with Subcube Conditioning
Chakrabarty, Deeparnab, Chen, Xi, Ristic, Simeon, Seshadhri, C., Waingarten, Erik
We study monotonicity testing of high-dimensional distributions on $\{-1,1\}^n$ in the model of subcube conditioning, suggested and studied by Canonne, Ron, and Servedio~\cite{CRS15} and Bhattacharyya and Chakraborty~\cite{BC18}. Previous work shows that the \emph{sample complexity} of monotonicity testing must be exponential in $n$ (Rubinfeld, Vasilian~\cite{RV20}, and Aliakbarpour, Gouleakis, Peebles, Rubinfeld, Yodpinyanee~\cite{AGPRY19}). We show that the subcube \emph{query complexity} is $\tilde{\Theta}(n/\varepsilon^2)$, by proving nearly matching upper and lower bounds. Our work is the first to use directed isoperimetric inequalities (developed for function monotonicity testing) for analyzing a distribution testing algorithm. Along the way, we generalize an inequality of Khot, Minzer, and Safra~\cite{KMS18} to real-valued functions on $\{-1,1\}^n$. We also study uniformity testing of distributions that are promised to be monotone, a problem introduced by Rubinfeld, Servedio~\cite{RS09} , using subcube conditioning. We show that the query complexity is $\tilde{\Theta}(\sqrt{n}/\varepsilon^2)$. Our work proves the lower bound, which matches (up to poly-logarithmic factors) the uniformity testing upper bound for general distributions (Canonne, Chen, Kamath, Levi, Waingarten~\cite{CCKLW21}). Hence, we show that monotonicity does not help, beyond logarithmic factors, in testing uniformity of distributions with subcube conditional queries.
Revisiting Priority $k$-Center: Fairness and Outliers
Bajpai, Tanvi, Chakrabarty, Deeparnab, Chekuri, Chandra, Negahbani, Maryam
In the Priority $k$-Center problem, the input consists of a metric space $(X,d)$, an integer $k$, and for each point $v \in X$ a priority radius $r(v)$. The goal is to choose $k$-centers $S \subseteq X$ to minimize $\max_{v \in X} \frac{1}{r(v)} d(v,S)$. If all $r(v)$'s are uniform, one obtains the $k$-Center problem. Plesn\'ik [Plesn\'ik, Disc. Appl. Math. 1987] introduced the Priority $k$-Center problem and gave a $2$-approximation algorithm matching the best possible algorithm for $k$-Center. We show how the problem is related to two different notions of fair clustering [Harris et al., NeurIPS 2018; Jung et al., FORC 2020]. Motivated by these developments we revisit the problem and, in our main technical contribution, develop a framework that yields constant factor approximation algorithms for Priority $k$-Center with outliers. Our framework extends to generalizations of Priority $k$-Center to matroid and knapsack constraints, and as a corollary, also yields algorithms with fairness guarantees in the lottery model of Harris et al [Harris et al, JMLR 2019].
Provable Submodular Minimization using Wolfe's Algorithm
Chakrabarty, Deeparnab, Jain, Prateek, Kothari, Pravesh
Owing to several applications in large scale learning and vision problems, fast submodular function minimization (SFM) has become a critical problem. Theoretically, unconstrained SFM can be performed in polynomial time (Iwata and Orlin 2009), however these algorithms are not practical. In 1976, Wolfe proposed an algorithm to find the minimum Euclidean norm point in a polytope, and in 1980, Fujishige showed how Wolfe's algorithm can be used for SFM. For general submodular functions, the Fujishige-Wolfe minimum norm algorithm seems to have the best empirical performance. Despite its good practical performance, theoretically very little is known about Wolfe's minimum norm algorithm -- to our knowledge the only result is an exponential time analysis due to Wolfe himself. In this paper we give a maiden convergence analysis of Wolfe's algorithm. We prove that in t iterations, Wolfe's algorithm returns a O(1/t)-approximate solution to the min-norm point. We also prove a robust version of Fujishige's theorem which shows that an O(1/n^2)-approximate solution to the min-norm point problem implies exact submodular minimization. As a corollary, we get the first pseudo-polynomial time guarantee for the Fujishige-Wolfe minimum norm algorithm for submodular function minimization. In particular, we show that the min-norm point algorithm solves SFM in O(n^7F^2)-time, where $F$ is an upper bound on the maximum change a single element can cause in the function value.