Goto

Collaborating Authors

 Chai, Zenghao


Towards Effective Collaborative Learning in Long-Tailed Recognition

arXiv.org Artificial Intelligence

Real-world data usually suffers from severe class imbalance and long-tailed distributions, where minority classes are significantly underrepresented compared to the majority ones. Recent research prefers to utilize multi-expert architectures to mitigate the model uncertainty on the minority, where collaborative learning is employed to aggregate the knowledge of experts, i.e., online distillation. In this paper, we observe that the knowledge transfer between experts is imbalanced in terms of class distribution, which results in limited performance improvement of the minority classes. To address it, we propose a re-weighted distillation loss by comparing two classifiers' predictions, which are supervised by online distillation and label annotations, respectively. We also emphasize that feature-level distillation will significantly improve model performance and increase feature robustness. Finally, we propose an Effective Collaborative Learning (ECL) framework that integrates a contrastive proxy task branch to further improve feature quality. Quantitative and qualitative experiments on four standard datasets demonstrate that ECL achieves state-of-the-art performance and the detailed ablation studies manifest the effectiveness of each component in ECL.


Learning Imbalanced Data with Vision Transformers

arXiv.org Artificial Intelligence

The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at https://github.com/XuZhengzhuo/LiVT.


ERA-Solver: Error-Robust Adams Solver for Fast Sampling of Diffusion Probabilistic Models

arXiv.org Artificial Intelligence

Though denoising diffusion probabilistic models (DDPMs) have achieved remarkable generation results, the low sampling efficiency of DDPMs still limits further applications. Since DDPMs can be formulated as diffusion ordinary differential equations (ODEs), various fast sampling methods can be derived from solving diffusion ODEs. However, we notice that previous sampling methods with fixed analytical form are not robust with the error in the noise estimated from pretrained diffusion models. In this work, we construct an error-robust Adams solver (ERA-Solver), which utilizes the implicit Adams numerical method that consists of a predictor and a corrector. Different from the traditional predictor based on explicit Adams methods, we leverage a Lagrange interpolation function as the predictor, which is further enhanced with an error-robust strategy to adaptively select the Lagrange bases with lower error in the estimated noise. Experiments on Cifar10, LSUN-Church, and LSUN-Bedroom datasets demonstrate that our proposed ERA-Solver achieves 5.14, 9.42, and 9.69 Fenchel Inception Distance (FID) for image generation, with only 10 network evaluations.