Ceyani, Emir
FedGrAINS: Personalized SubGraph Federated Learning with Adaptive Neighbor Sampling
Ceyani, Emir, Xie, Han, Buyukates, Baturalp, Yang, Carl, Avestimehr, Salman
Graphs are crucial for modeling relational and biological data. As datasets grow larger in real-world scenarios, the risk of exposing sensitive information increases, making privacy-preserving training methods like federated learning (FL) essential to ensure data security and compliance with privacy regulations. Recently proposed personalized subgraph FL methods have become the de-facto standard for training personalized Graph Neural Networks (GNNs) in a federated manner while dealing with the missing links across clients' subgraphs due to privacy restrictions. However, personalized subgraph FL faces significant challenges due to the heterogeneity in client subgraphs, such as degree distributions among the nodes, which complicate federated training of graph models. To address these challenges, we propose \textit{FedGrAINS}, a novel data-adaptive and sampling-based regularization method for subgraph FL. FedGrAINS leverages generative flow networks (GFlowNets) to evaluate node importance concerning clients' tasks, dynamically adjusting the message-passing step in clients' GNNs. This adaptation reflects task-optimized sampling aligned with a trajectory balance objective. Experimental results demonstrate that the inclusion of \textit{FedGrAINS} as a regularizer consistently improves the FL performance compared to baselines that do not leverage such regularization.
One Model to Unite Them All: Personalized Federated Learning of Multi-Contrast MRI Synthesis
Dalmaz, Onat, Mirza, Usama, Elmas, Gรถkberk, รzbey, Muzaffer, Dar, Salman UH, Ceyani, Emir, Avestimehr, Salman, รukur, Tolga
Multi-institutional collaborations are key for learning generalizable MRI synthesis models that translate source- onto target-contrast images. To facilitate collaboration, federated learning (FL) adopts decentralized training and mitigates privacy concerns by avoiding sharing of imaging data. However, FL-trained synthesis models can be impaired by the inherent heterogeneity in the data distribution, with domain shifts evident when common or variable translation tasks are prescribed across sites. Here we introduce the first personalized FL method for MRI Synthesis (pFLSynth) to improve reliability against domain shifts. pFLSynth is based on an adversarial model that produces latents specific to individual sites and source-target contrasts, and leverages novel personalization blocks to adaptively tune the statistics and weighting of feature maps across the generator stages given latents. To further promote site specificity, partial model aggregation is employed over downstream layers of the generator while upstream layers are retained locally. As such, pFLSynth enables training of a unified synthesis model that can reliably generalize across multiple sites and translation tasks. Comprehensive experiments on multi-site datasets clearly demonstrate the enhanced performance of pFLSynth against prior federated methods in multi-contrast MRI synthesis.
FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks
He, Chaoyang, Balasubramanian, Keshav, Ceyani, Emir, Rong, Yu, Zhao, Peilin, Huang, Junzhou, Annavaram, Murali, Avestimehr, Salman
Graph Neural Network (GNN) research is rapidly growing thanks to the capacity of GNNs to learn representations from graph-structured data. However, centralizing a massive amount of real-world graph data for GNN training is prohibitive due to user-side privacy concerns, regulation restrictions, and commercial competition. Federated learning (FL), a trending distributed learning paradigm, aims to solve this challenge while preserving privacy. Despite recent advances in vision and language domains, there is no suitable platform for the federated training of GNNs. To this end, we introduce FedGraphNN, an open research federated learning system and a benchmark to facilitate GNN-based FL research. FedGraphNN is built on a unified formulation of federated GNNs and supports commonly used datasets, GNN models, FL algorithms, and flexible APIs. We also contribute a new molecular dataset, hERG, to promote research exploration. Our experimental results present significant challenges in federated GNN training: federated GNNs perform worse in most datasets with a non-I.I.D split than centralized GNNs; the GNN model that attains the best result in the centralized setting may not hold its advantage in the federated setting. These results imply that more research efforts are needed to unravel the mystery behind federated GNN training. Moreover, our system performance analysis demonstrates that the FedGraphNN system is computationally affordable to most research labs with limited GPUs. We maintain the source code at https://github.com/FedML-AI/FedGraphNN.