Goto

Collaborating Authors

 Cer, Daniel


Gemini Embedding: Generalizable Embeddings from Gemini

arXiv.org Artificial Intelligence

Embedding models, which transform inputs into dense vector representations, are pivotal for capturing semantic information across various domains and modalities. Text embedding models represent words and sentences as vectors, strategically positioning semantically similar texts in close proximity within the embedding space (Gao et al., 2021; Le and Mikolov, 2014; Reimers and Gurevych, 2019). Recent research has focused on developing general-purpose embedding models capable of excelling in diverse downstream tasks, including information retrieval, clustering, and classification (Cer et al., 2018; Muennighoff et al., 2023). Leveraging their vast pre-training knowledge, large language models (LLMs) have emerged as a promising avenue for constructing such general-purpose embedding models, with the potential to significantly enhance performance across a broad spectrum of applications (Anil et al., 2023a,b; Brown et al., 2020). The integration of LLMs has revolutionized the development of high-quality embedding models through two primary approaches. Firstly, LLMs have been employed to refine training datasets by generating higher quality examples. Techniques such as hard negative mining (Lee et al., 2024) and synthetic data generation (Dai et al., 2022; Wang et al., 2023) enable the distillation of LLM knowledge into smaller, more efficient embedding models, leading to substantial performance gains. Secondly, recognizing that the embedding model parameters are frequently initialized from language models (Devlin et al., 2019; Karpukhin et al., 2020), researchers have explored leveraging LLM parameters directly for initialization (Ni et al., 2021).


ATEB: Evaluating and Improving Advanced NLP Tasks for Text Embedding Models

arXiv.org Artificial Intelligence

Traditional text embedding benchmarks primarily evaluate embedding models' capabilities to capture semantic similarity. However, more advanced NLP tasks require a deeper understanding of text, such as safety and factuality. These tasks demand an ability to comprehend and process complex information, often involving the handling of sensitive content, or the verification of factual statements against reliable sources. We introduce a new benchmark designed to assess and highlight the limitations of embedding models trained on existing information retrieval data mixtures on advanced capabilities, which include factuality, safety, instruction following, reasoning and document-level understanding. This benchmark includes a diverse set of tasks that simulate real-world scenarios where these capabilities are critical and leads to identification of the gaps of the currently advanced embedding models. Furthermore, we propose a novel method that reformulates these various tasks as retrieval tasks. By framing tasks like safety or factuality classification as retrieval problems, we leverage the strengths of retrieval models in capturing semantic relationships while also pushing them to develop a deeper understanding of context and content. Using this approach with single-task fine-tuning, we achieved performance gains of 8\% on factuality classification and 13\% on safety classification. Our code and data will be publicly available.


Transforming LLMs into Cross-modal and Cross-lingual Retrieval Systems

arXiv.org Artificial Intelligence

Large language models (LLMs) are trained on text-only data that go far beyond the languages with paired speech and text data. At the same time, Dual Encoder (DE) based retrieval systems project queries and documents into the same embedding space and have demonstrated their success in retrieval and bi-text mining. To match speech and text in many languages, we propose using LLMs to initialize multi-modal DE retrieval systems. Unlike traditional methods, our system doesn't require speech data during LLM pre-training and can exploit LLM's multilingual text understanding capabilities to match speech and text in languages unseen during retrieval training. Our multi-modal LLM-based retrieval system is capable of matching speech and text in 102 languages despite only training on 21 languages. Our system outperforms previous systems trained explicitly on all 102 languages. We achieve a 10% absolute improvement in Recall@1 averaged across these languages. Additionally, our model demonstrates cross-lingual speech and text matching, which is further enhanced by readily available machine translation data.


Gemma: Open Models Based on Gemini Research and Technology

arXiv.org Artificial Intelligence

This work introduces Gemma, a family of lightweight, state-of-the art open models built from the research and technology used to create Gemini models. Gemma models demonstrate strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Gemma outperforms similarly sized open models on 11 out of 18 text-based tasks, and we present comprehensive evaluations of safety and responsibility aspects of the models, alongside a detailed description of model development. We believe the responsible release of LLMs is critical for improving the safety of frontier models, and for enabling the next wave of LLM innovations.


Gecko: Versatile Text Embeddings Distilled from Large Language Models

arXiv.org Artificial Intelligence

Text embedding models represent natural language as dense vectors, positioning semantically similar text near each other within the embedding space (Gao et al., 2021; Le and Mikolov, 2014; Reimers and Gurevych, 2019). These embeddings are commonly used for a wide range of downstream tasks including document retrieval, sentence similarity, classification, and clustering (Muennighoff et al., 2023). Instead of building separate embedding models for each downstream task, recent efforts seek to create a single embedding model supporting many tasks. The recent development of general-purpose text embedding models presents a challenge: these models require large amounts of training data to comprehensively cover desired domains and skills. Recent embedding efforts have focused on using extensive collections of training examples (Li et al., 2023; Wang et al., 2022).


Leveraging LLMs for Synthesizing Training Data Across Many Languages in Multilingual Dense Retrieval

arXiv.org Artificial Intelligence

Dense retrieval models have predominantly been studied for English, where models have shown great success, due to the availability of human-labeled training pairs. However, there has been limited success for multilingual retrieval so far, as training data is uneven or scarcely available across multiple languages. Synthetic training data generation is promising (e.g., InPars or Promptagator), but has been investigated only for English. Therefore, to study model capabilities across both cross-lingual and monolingual retrieval tasks, we develop SWIM-IR, a synthetic retrieval training dataset containing 33 (high to very-low resource) languages for training multilingual dense retrieval models without requiring any human supervision. To construct SWIM-IR, we propose SAP (summarize-then-ask prompting), where the large language model (LLM) generates a textual summary prior to the query generation step. SAP assists the LLM in generating informative queries in the target language. Using SWIM-IR, we explore synthetic fine-tuning of multilingual dense retrieval models and evaluate them robustly on three retrieval benchmarks: XOR-Retrieve (cross-lingual), XTREME-UP (cross-lingual) and MIRACL (monolingual). Our models, called SWIM-X, are competitive with human-supervised dense retrieval models, e.g., mContriever, finding that SWIM-IR can cheaply substitute for expensive human-labeled retrieval training data.


A Simple and Effective Method To Eliminate the Self Language Bias in Multilingual Representations

arXiv.org Artificial Intelligence

Language agnostic and semantic-language information isolation is an emerging research direction for multilingual representations models. We explore this problem from a novel angle of geometric algebra and semantic space. A simple but highly effective method "Language Information Removal (LIR)" factors out language identity information from semantic related components in multilingual representations pre-trained on multi-monolingual data. A post-training and model-agnostic method, LIR only uses simple linear operations, e.g. matrix factorization and orthogonal projection. LIR reveals that for weak-alignment multilingual systems, the principal components of semantic spaces primarily encodes language identity information. We first evaluate the LIR on a cross-lingual question answer retrieval task (LAReQA), which requires the strong alignment for the multilingual embedding space. Experiment shows that LIR is highly effectively on this task, yielding almost 100% relative improvement in MAP for weak-alignment models. We then evaluate the LIR on Amazon Reviews and XEVAL dataset, with the observation that removing language information is able to improve the cross-lingual transfer performance.


SeqGenSQL -- A Robust Sequence Generation Model for Structured Query Language

arXiv.org Artificial Intelligence

We explore using T5 (Raffel et al. (2019)) to directly translate natural language questions into SQL statements. General purpose natural language that interfaces to information stored within databases requires flexibly translating natural language questions into database queries. The best performing text-to-SQL systems approach this task by first converting questions into an intermediate logical form (LF) (Lyu et al. (2020)). While LFs provide a convenient intermediate representation and simplify query generation, they introduce an additional layer of complexity and annotation requirements. However, weakly supervised modeling that directly converts questions to SQL statements has proven more difficult without the scaffolding provided by LFs (Min et al. (2019)). We approach direct conversion of questions to SQL statements using T5 (Raffel et al. (2019)), a pre-trained textto-text generation model, modified to support pointer-generator style decoding (See et al. (2017)). We explore using question augmentation with table schema information and the use of automatically generated silver training data. The resulting model achieves 90.5% execution accuracy on the WikiSQL (Zhong et al. (2017)) test data set, a new state-of-the-art on weakly supervised SQL generation. The performance improvement is 6.6% absolute over the prior state-of-the-art (Min et al. (2019)) and approaches the performance of state-ofthe-art systems making use of LFs.