Cembalest, Max
Style Outweighs Substance: Failure Modes of LLM Judges in Alignment Benchmarking
Feuer, Benjamin, Goldblum, Micah, Datta, Teresa, Nambiar, Sanjana, Besaleli, Raz, Dooley, Samuel, Cembalest, Max, Dickerson, John P.
The release of ChatGPT in November 2022 sparked an explosion of interest in post-training and an avalanche of new preference optimization (PO) methods. These methods claim superior alignment by virtue of better correspondence with human pairwise preferences, often measured by LLM-judges. In this work, we attempt to answer the following question -- do LLM-judge preferences translate to progress on other, more concrete metrics for alignment, and if not, why not? We define a concrete metric for alignment, and introduce SOS-Bench (Substance Outweighs Style Benchmark), which is to the best of our knowledge the largest standardized, reproducible LLM meta-benchmark to date. We find that (1) LLM-judge preferences do not correlate with concrete measures of safety, world knowledge, and instruction following; (2) LLM-judges have powerful implicit biases, prioritizing style over factuality and safety; and (3) the supervised fine-tuning (SFT) stage of post-training, and not the PO stage, has the greatest impact on alignment, with data scaling and prompt diversity as the driving factors. Our codebase and complete results can be found at https://github.com/penfever/sos-bench.
Reckoning with the Disagreement Problem: Explanation Consensus as a Training Objective
Schwarzschild, Avi, Cembalest, Max, Rao, Karthik, Hines, Keegan, Dickerson, John
As neural networks increasingly make critical decisions in high-stakes settings, monitoring and explaining their behavior in an understandable and trustworthy manner is a necessity. One commonly used type of explainer is post hoc feature attribution, a family of methods for giving each feature in an input a score corresponding to its influence on a model's output. A major limitation of this family of explainers in practice is that they can disagree on which features are more important than others. Our contribution in this paper is a method of training models with this disagreement problem in mind. We do this by introducing a Post hoc Explainer Agreement Regularization (PEAR) loss term alongside the standard term corresponding to accuracy, an additional term that measures the difference in feature attribution between a pair of explainers. We observe on three datasets that we can train a model with this loss term to improve explanation consensus on unseen data, and see improved consensus between explainers other than those used in the loss term. We examine the trade-off between improved consensus and model performance. And finally, we study the influence our method has on feature attribution explanations.
Tensions Between the Proxies of Human Values in AI
Datta, Teresa, Nissani, Daniel, Cembalest, Max, Khanna, Akash, Massa, Haley, Dickerson, John P.
Motivated by mitigating potentially harmful impacts of technologies, the AI community has formulated and accepted mathematical definitions for certain pillars of accountability: e.g. privacy, fairness, and model transparency. Yet, we argue this is fundamentally misguided because these definitions are imperfect, siloed constructions of the human values they hope to proxy, while giving the guise that those values are sufficiently embedded in our technologies. Under popularized methods, tensions arise when practitioners attempt to achieve each pillar of fairness, privacy, and transparency in isolation or simultaneously. In this position paper, we push for redirection. We argue that the AI community needs to consider all the consequences of choosing certain formulations of these pillars -- not just the technical incompatibilities, but also the effects within the context of deployment. We point towards sociotechnical research for frameworks for the latter, but push for broader efforts into implementing these in practice.