Goto

Collaborating Authors

 Celli, Andrea


Nearly-Optimal Bandit Learning in Stackelberg Games with Side Information

arXiv.org Artificial Intelligence

We study the problem of online learning in Stackelberg games with side information between a leader and a sequence of followers. In every round the leader observes contextual information and commits to a mixed strategy, after which the follower best-responds. We provide learning algorithms for the leader which achieve $O(T^{1/2})$ regret under bandit feedback, an improvement from the previously best-known rates of $O(T^{2/3})$. Our algorithms rely on a reduction to linear contextual bandits in the utility space: In each round, a linear contextual bandit algorithm recommends a utility vector, which our algorithm inverts to determine the leader's mixed strategy. We extend our algorithms to the setting in which the leader's utility function is unknown, and also apply it to the problems of bidding in second-price auctions with side information and online Bayesian persuasion with public and private states. Finally, we observe that our algorithms empirically outperform previous results on numerical simulations.


Optimal Correlated Equilibria in General-Sum Extensive-Form Games: Fixed-Parameter Algorithms, Hardness, and Two-Sided Column-Generation

arXiv.org Artificial Intelligence

We study the problem of finding optimal correlated equilibria of various sorts in extensive-form games: normal-form coarse correlated equilibrium (NFCCE), extensive-form coarse correlated equilibrium (EFCCE), and extensive-form correlated equilibrium (EFCE). We make two primary contributions. First, we introduce a new algorithm for computing optimal equilibria in all three notions. Its runtime depends exponentially only on a parameter related to the information structure of the game. We also prove a fundamental complexity gap: while our size bounds for NFCCE are similar to those achieved in the case of team games by Zhang et al., this is impossible to achieve for the other two concepts under standard complexity assumptions. Second, we propose a two-sided column generation approach for use when the runtime or memory usage of the previous algorithm is prohibitive. Our algorithm improves upon the one-sided approach of Farina et al. by means of a new decomposition of correlated strategies which allows players to re-optimize their sequence-form strategies with respect to correlation plans which were previously added to the support. Experiments show that our techniques outperform the prior state of the art for computing optimal general-sum correlated equilibria.


Bandits with Replenishable Knapsacks: the Best of both Worlds

arXiv.org Artificial Intelligence

The bandits with knapsack (BwK) framework models online decision-making problems in which an agent makes a sequence of decisions subject to resource consumption constraints. The traditional model assumes that each action consumes a non-negative amount of resources and the process ends when the initial budgets are fully depleted. We study a natural generalization of the BwK framework which allows non-monotonic resource utilization, i.e., resources can be replenished by a positive amount. We propose a best-of-both-worlds primal-dual template that can handle any online learning problem with replenishment for which a suitable primal regret minimizer exists. In particular, we provide the first positive results for the case of adversarial inputs by showing that our framework guarantees a constant competitive ratio $\alpha$ when $B=\Omega(T)$ or when the possible per-round replenishment is a positive constant. Moreover, under a stochastic input model, our algorithm yields an instance-independent $\tilde{O}(T^{1/2})$ regret bound which complements existing instance-dependent bounds for the same setting. Finally, we provide applications of our framework to some economic problems of practical relevance.


Online Learning under Budget and ROI Constraints and Applications to Bidding in Non-Truthful Auctions

arXiv.org Artificial Intelligence

We study online learning problems in which a decision maker has to make a sequence of costly decisions, with the goal of maximizing their expected reward while adhering to budget and return-on-investment (ROI) constraints. Previous work requires the decision maker to know beforehand some specific parameters related to the degree of strict feasibility of the offline problem. Moreover, when inputs are adversarial, it requires the existence of a strictly feasible solution to the offline optimization problem at each round. Both requirements are unrealistic for practical applications such as bidding in online ad auctions. We propose a best-of-both-worlds primal-dual framework which circumvents both assumptions by exploiting the notion of interval regret, providing guarantees under both stochastic and adversarial inputs. Our proof techniques can be applied to both input models with minimal modifications, thereby providing a unified perspective on the two problems. Finally, we show how to instantiate the framework to optimally bid in various mechanisms of practical relevance, such as first- and second-price auctions.


Best of Many Worlds Guarantees for Online Learning with Knapsacks

arXiv.org Artificial Intelligence

We study online learning problems in which a decision maker wants to maximize their expected reward without violating a finite set of $m$ resource constraints. By casting the learning process over a suitably defined space of strategy mixtures, we recover strong duality on a Lagrangian relaxation of the underlying optimization problem, even for general settings with non-convex reward and resource-consumption functions. Then, we provide the first best-of-many-worlds type framework for this setting, with no-regret guarantees under stochastic, adversarial, and non-stationary inputs. Our framework yields the same regret guarantees of prior work in the stochastic case. On the other hand, when budgets grow at least linearly in the time horizon, it allows us to provide a constant competitive ratio in the adversarial case, which improves over the best known upper bound bound of $O(\log m \log T)$. Moreover, our framework allows the decision maker to handle non-convex reward and cost functions. We provide two game-theoretic applications of our framework to give further evidence of its flexibility. In doing so, we show that it can be employed to implement budget-pacing mechanisms in repeated first-price auctions.


Fully Dynamic Online Selection through Online Contention Resolution Schemes

arXiv.org Artificial Intelligence

We study fully dynamic online selection problems in an adversarial/stochastic setting that includes Bayesian online selection, prophet inequalities, posted price mechanisms, and stochastic probing problems subject to combinatorial constraints. In the classical ``incremental'' version of the problem, selected elements remain active until the end of the input sequence. On the other hand, in the fully dynamic version of the problem, elements stay active for a limited time interval, and then leave. This models, for example, the online matching of tasks to workers with task/worker-dependent working times, and sequential posted pricing of perishable goods. A successful approach to online selection problems in the adversarial setting is given by the notion of Online Contention Resolution Scheme (OCRS), that uses a priori information to formulate a linear relaxation of the underlying optimization problem, whose optimal fractional solution is rounded online for any adversarial order of the input sequence. Our main contribution is providing a general method for constructing an OCRS for fully dynamic online selection problems. Then, we show how to employ such OCRS to construct no-regret algorithms in a partial information model with semi-bandit feedback and adversarial inputs.


Multi-Receiver Online Bayesian Persuasion

arXiv.org Artificial Intelligence

Bayesian persuasion studies how an informed sender should partially disclose information to influence the behavior of a self-interested receiver. Classical models make the stringent assumption that the sender knows the receiver's utility. This can be relaxed by considering an online learning framework in which the sender repeatedly faces a receiver of an unknown, adversarially selected type. We study, for the first time, an online Bayesian persuasion setting with multiple receivers. We focus on the case with no externalities and binary actions, as customary in offline models. Our goal is to design no-regret algorithms for the sender with polynomial per-iteration running time. First, we prove a negative result: for any $0 < \alpha \leq 1$, there is no polynomial-time no-$\alpha$-regret algorithm when the sender's utility function is supermodular or anonymous. Then, we focus on the case of submodular sender's utility functions and we show that, in this case, it is possible to design a polynomial-time no-$(1 - \frac{1}{e})$-regret algorithm. To do so, we introduce a general online gradient descent scheme to handle online learning problems with a finite number of possible loss functions. This requires the existence of an approximate projection oracle. We show that, in our setting, there exists one such projection oracle which can be implemented in polynomial time.


Multi-Agent Coordination in Adversarial Environments through Signal Mediated Strategies

arXiv.org Artificial Intelligence

Many real-world scenarios involve teams of agents that have to coordinate their actions to reach a shared goal. We focus on the setting in which a team of agents faces an opponent in a zero-sum, imperfect-information game. Team members can coordinate their strategies before the beginning of the game, but are unable to communicate during the playing phase of the game. This is the case, for example, in Bridge, collusion in poker, and collusion in bidding. In this setting, model-free RL methods are oftentimes unable to capture coordination because agents' policies are executed in a decentralized fashion. Our first contribution is a game-theoretic centralized training regimen to effectively perform trajectory sampling so as to foster team coordination. When team members can observe each other actions, we show that this approach provably yields equilibrium strategies. Then, we introduce a signaling-based framework to represent team coordinated strategies given a buffer of past experiences. Each team member's policy is parametrized as a neural network whose output is conditioned on a suitable exogenous signal, drawn from a learned probability distribution. By combining these two elements, we empirically show convergence to coordinated equilibria in cases where previous state-of-the-art multi-agent RL algorithms did not.


Faster Algorithms for Optimal Ex-Ante Coordinated Collusive Strategies in Extensive-Form Zero-Sum Games

arXiv.org Artificial Intelligence

We focus on the problem of finding an optimal strategy for a team of two players that faces an opponent in an imperfect-information zero-sum extensive-form game. Team members are not allowed to communicate during play but can coordinate before the game. In that setting, it is known that the best the team can do is sample a profile of potentially randomized strategies (one per player) from a joint (a.k.a. correlated) probability distribution at the beginning of the game. In this paper, we first provide new modeling results about computing such an optimal distribution by drawing a connection to a different literature on extensive-form correlation. Second, we provide an algorithm that computes such an optimal distribution by only using profiles where only one of the team members gets to randomize in each profile. We can also cap the number of such profiles we allow in the solution. This begets an anytime algorithm by increasing the cap. We find that often a handful of well-chosen such profiles suffices to reach optimal utility for the team. This enables team members to reach coordination through a relatively simple and understandable plan. Finally, inspired by this observation and leveraging theoretical concepts that we introduce, we develop an efficient column-generation algorithm for finding an optimal distribution for the team. We evaluate it on a suite of common benchmark games. It is three orders of magnitude faster than the prior state of the art on games that the latter can solve and it can also solve several games that were previously unsolvable.


Persuading Voters: It's Easy to Whisper, It's Hard to Speak Loud

arXiv.org Artificial Intelligence

We focus on the following natural question: is it possible to influence the outcome of a voting process through the strategic provision of information to voters who update their beliefs rationally? We investigate whether it is computationally tractable to design a signaling scheme maximizing the probability with which the sender's preferred candidate is elected. We focus on the model recently introduced by Arieli and Babichenko (2019) (i.e., without inter-agent externalities), and consider, as explanatory examples, $k$-voting rule and plurality voting. There is a sharp contrast between the case in which private signals are allowed and the more restrictive setting in which only public signals are allowed. In the former, we show that an optimal signaling scheme can be computed efficiently both under a $k$-voting rule and plurality voting. In establishing these results, we provide two general (i.e., applicable to settings beyond voting) contributions. Specifically, we extend a well known result by Dughmi and Xu (2017) to more general settings, and prove that, when the sender's utility function is anonymous, computing an optimal signaling scheme is fixed parameter tractable w.r.t. the number of receivers' actions. In the public signaling case, we show that the sender's optimal expected return cannot be approximated to within any factor under a $k$-voting rule. This negative result easily extends to plurality voting and problems where utility functions are anonymous.