Plotting

 Cao, Yang


Sell It Before You Make It: Revolutionizing E-Commerce with Personalized AI-Generated Items

arXiv.org Artificial Intelligence

E-commerce has revolutionized retail, yet its traditional workflows remain inefficient, with significant time and resource costs tied to product design and manufacturing inventory. This paper introduces a novel system deployed at Alibaba that leverages AI-generated items (AIGI) to address these challenges with personalized text-to-image generation for e-commercial product design. AIGI enables an innovative business mode called "sell it before you make it", where merchants can design fashion items and generate photorealistic images with digital models based on textual descriptions. Only when the items have received a certain number of orders, do the merchants start to produce them, which largely reduces reliance on physical prototypes and thus accelerates time to market. For such a promising application, we identify the underlying key scientific challenge, i.e., capturing the users' group-level personalized preferences towards multiple generated candidate images. To this end, we propose a Personalized Group-Level Preference Alignment Framework for Diffusion Models (i.e., PerFusion). We first design PerFusion Reward Model for user preference estimation with a feature-crossing-based personalized plug-in. Then we develop PerFusion with a personalized adaptive network to model diverse preferences across users, and meanwhile derive the group-level preference optimization objective to capture the comparative behaviors among multiple candidates. Both offline and online experiments demonstrate the effectiveness of our proposed algorithm. The AI-generated items have achieved over 13% relative improvements for both click-through rate and conversion rate compared to their human-designed counterparts, validating the revolutionary potential of AI-generated items for e-commercial platforms.


Membership Inference Attacks on Large-Scale Models: A Survey

arXiv.org Artificial Intelligence

The adoption of the Large Language Model (LLM) has accelerated dramatically since the ChatGPT from OpenAI went online in November 2022. Recent advances in Large Multimodal Models (LMMs), which process diverse data types and enable interaction through various channels, have expanded beyond the text-to-text limitations of early LLMs, attracting significant and concurrent attention from both researchers and industry. While LLMs and LMMs are starting to spread widely, concerns about their privacy risks are increasing as well. Membership Inference Attacks (MIAs), techniques used to determine whether a particular data point was part of a model's training set, serve as a key metric for assessing the privacy vulnerabilities of machine learning models. Hu et al. show that various machine learning algorithms are vulnerable to MIA. Despite extensive studies on MIAs in traditional models, there remains a lack of systematic surveys addressing their effectiveness and implications in modern large-scale models like LLMs and LMMs. In this paper, we systematically reviewed recent studies of MIA against LLMs and LMMs. We analyzed and categorized each attack based on their methodology and scenario and discussed the limitations in existing research. Additionally, we examine privacy concerns associated with the fine-tuning process. Finally, we provided some suggestions for future research in this direction.


Every FLOP Counts: Scaling a 300B Mixture-of-Experts LING LLM without Premium GPUs

arXiv.org Artificial Intelligence

In this technical report, we tackle the challenges of training large-scale Mixture of Experts (MoE) models, focusing on overcoming cost inefficiency and resource limitations prevalent in such systems. To address these issues, we present two differently sized MoE large language models (LLMs), namely Ling-Lite and Ling-Plus (referred to as "Bailing" in Chinese, spelled B\v{a}il\'ing in Pinyin). Ling-Lite contains 16.8 billion parameters with 2.75 billion activated parameters, while Ling-Plus boasts 290 billion parameters with 28.8 billion activated parameters. Both models exhibit comparable performance to leading industry benchmarks. This report offers actionable insights to improve the efficiency and accessibility of AI development in resource-constrained settings, promoting more scalable and sustainable technologies. Specifically, to reduce training costs for large-scale MoE models, we propose innovative methods for (1) optimization of model architecture and training processes, (2) refinement of training anomaly handling, and (3) enhancement of model evaluation efficiency. Additionally, leveraging high-quality data generated from knowledge graphs, our models demonstrate superior capabilities in tool use compared to other models. Ultimately, our experimental findings demonstrate that a 300B MoE LLM can be effectively trained on lower-performance devices while achieving comparable performance to models of a similar scale, including dense and MoE models. Compared to high-performance devices, utilizing a lower-specification hardware system during the pre-training phase demonstrates significant cost savings, reducing computing costs by approximately 20%. The models can be accessed at https://huggingface.co/inclusionAI.


Step-Audio: Unified Understanding and Generation in Intelligent Speech Interaction

arXiv.org Artificial Intelligence

Real-time speech interaction, serving as a fundamental interface for human-machine collaboration, holds immense potential. However, current open-source models face limitations such as high costs in voice data collection, weakness in dynamic control, and limited intelligence. To address these challenges, this paper introduces Step-Audio, the first production-ready open-source solution. Key contributions include: 1) a 130B-parameter unified speech-text multi-modal model that achieves unified understanding and generation, with the Step-Audio-Chat version open-sourced; 2) a generative speech data engine that establishes an affordable voice cloning framework and produces the open-sourced lightweight Step-Audio-TTS-3B model through distillation; 3) an instruction-driven fine control system enabling dynamic adjustments across dialects, emotions, singing, and RAP; 4) an enhanced cognitive architecture augmented with tool calling and role-playing abilities to manage complex tasks effectively. Based on our new StepEval-Audio-360 evaluation benchmark, Step-Audio achieves state-of-the-art performance in human evaluations, especially in terms of instruction following. On open-source benchmarks like LLaMA Question, shows 9.3% average performance improvement, demonstrating our commitment to advancing the development of open-source multi-modal language technologies. Our code and models are available at https://github.com/stepfun-ai/Step-Audio.


Force Matching with Relativistic Constraints: A Physics-Inspired Approach to Stable and Efficient Generative Modeling

arXiv.org Artificial Intelligence

This paper introduces Force Matching (ForM), a novel framework for generative modeling that represents an initial exploration into leveraging special relativistic mechanics to enhance the stability of the sampling process. By incorporating the Lorentz factor, ForM imposes a velocity constraint, ensuring that sample velocities remain bounded within a constant limit. This constraint serves as a fundamental mechanism for stabilizing the generative dynamics, leading to a more robust and controlled sampling process. We provide a rigorous theoretical analysis demonstrating that the velocity constraint is preserved throughout the sampling procedure within the ForM framework. To validate the effectiveness of our approach, we conduct extensive empirical evaluations. On the \textit{half-moons} dataset, ForM significantly outperforms baseline methods, achieving the lowest Euclidean distance loss of \textbf{0.714}, in contrast to vanilla first-order flow matching (5.853) and first- and second-order flow matching (5.793). Additionally, we perform an ablation study to further investigate the impact of our velocity constraint, reaffirming the superiority of ForM in stabilizing the generative process. The theoretical guarantees and empirical results underscore the potential of integrating special relativity principles into generative modeling. Our findings suggest that ForM provides a promising pathway toward achieving stable, efficient, and flexible generative processes. This work lays the foundation for future advancements in high-dimensional generative modeling, opening new avenues for the application of physical principles in machine learning.


TruePose: Human-Parsing-guided Attention Diffusion for Full-ID Preserving Pose Transfer

arXiv.org Artificial Intelligence

Pose-Guided Person Image Synthesis (PGPIS) generates images that maintain a subject's identity from a source image while adopting a specified target pose (e.g., skeleton). While diffusion-based PGPIS methods effectively preserve facial features during pose transformation, they often struggle to accurately maintain clothing details from the source image throughout the diffusion process. This limitation becomes particularly problematic when there is a substantial difference between the source and target poses, significantly impacting PGPIS applications in the fashion industry where clothing style preservation is crucial for copyright protection. Our analysis reveals that this limitation primarily stems from the conditional diffusion model's attention modules failing to adequately capture and preserve clothing patterns. To address this limitation, we propose human-parsing-guided attention diffusion, a novel approach that effectively preserves both facial and clothing appearance while generating high-quality results. We propose a human-parsing-aware Siamese network that consists of three key components: dual identical UNets (TargetNet for diffusion denoising and SourceNet for source image embedding extraction), a human-parsing-guided fusion attention (HPFA), and a CLIP-guided attention alignment (CAA). The HPFA and CAA modules can embed the face and clothes patterns into the target image generation adaptively and effectively. Extensive experiments on both the in-shop clothes retrieval benchmark and the latest in-the-wild human editing dataset demonstrate our method's significant advantages over 13 baseline approaches for preserving both facial and clothes appearance in the source image.


Data Overvaluation Attack and Truthful Data Valuation

arXiv.org Artificial Intelligence

In collaborative machine learning, data valuation, i.e., evaluating the contribution of each client' data to the machine learning model, has become a critical task for incentivizing and selecting positive data contributions. However, existing studies often assume that clients engage in data valuation truthfully, overlooking the practical motivation for clients to exaggerate their contributions. To unlock this threat, this paper introduces the first data overvaluation attack, enabling strategic clients to have their data significantly overvalued. Furthermore, we propose a truthful data valuation metric, named Truth-Shapley. Truth-Shapley is the unique metric that guarantees some promising axioms for data valuation while ensuring that clients' optimal strategy is to perform truthful data valuation. Our experiments demonstrate the vulnerability of existing data valuation metrics to the data overvaluation attack and validate the robustness and effectiveness of Truth-Shapley.


OmniRL: In-Context Reinforcement Learning by Large-Scale Meta-Training in Randomized Worlds

arXiv.org Artificial Intelligence

We introduce OmniRL, a highly generalizable in-context reinforcement learning (ICRL) model that is meta-trained on hundreds of thousands of diverse tasks. These tasks are procedurally generated by randomizing state transitions and rewards within Markov Decision Processes. To facilitate this extensive meta-training, we propose two key innovations: 1. An efficient data synthesis pipeline for ICRL, which leverages the interaction histories of diverse behavior policies; and 2. A novel modeling framework that integrates both imitation learning and reinforcement learning (RL) within the context, by incorporating prior knowledge. For the first time, we demonstrate that in-context learning (ICL) alone, without any gradient-based fine-tuning, can successfully tackle unseen Gymnasium tasks through imitation learning, online RL, or offline RL. Additionally, we show that achieving generalized ICRL capabilities-unlike task identification-oriented few-shot learning-critically depends on long trajectories generated by variant tasks and diverse behavior policies. By emphasizing the potential of ICL and departing from pre-training focused on acquiring specific skills, we further underscore the significance of meta-training aimed at cultivating the ability of ICL itself.


TAD-Bench: A Comprehensive Benchmark for Embedding-Based Text Anomaly Detection

arXiv.org Artificial Intelligence

Existing studies often lack Anomaly detection is a critical task in machine systematic evaluations of how different embeddings learning, with applications ranging from fraud detection perform across diverse anomaly types, raising and content moderation to user behavior questions about their generalization capabilities analysis (Pang et al., 2021). Within natural language in complex, real-world scenarios such as multilingual processing (NLP), anomaly detection has become settings or domain-specific anomalies. Recent increasingly relevant for identifying outliers efforts, such as AD-NLP (Bejan et al., 2023) such as harmful content, phishing attempts, and and NLP-ADBench (Li et al., 2024), have significantly spam reviews. However, while AD tasks in structured advanced anomaly detection in NLP. ADdata (e.g., tabular, time series, graphs) (Steinbuss NLP provides valuable insights into different types and Böhm, 2021; Blázquez-García et al., 2021; of anomalies, while NLP-ADBench expands evaluations Qiao et al., 2024) have achieved significant maturity, to a wide range of algorithms and datasets.


Grams: Gradient Descent with Adaptive Momentum Scaling

arXiv.org Artificial Intelligence

We introduce \textbf{Gr}adient Descent with \textbf{A}daptive \textbf{M}omentum \textbf{S}caling (\textbf{Grams}), a novel optimization algorithm that decouples the direction and magnitude of parameter updates in deep learning. Unlike traditional optimizers that directly integrate momentum into updates, Grams separates the update direction, derived from current gradients, from momentum, which is used solely for adaptive magnitude scaling. This approach enables Grams to achieve improved loss descent compared to state-of-the-art cautious and momentum-based optimizers. We establish a global convergence guarantee for Grams and validate its effectiveness through extensive empirical evaluations. The results demonstrate Grams' superior performance, including faster convergence and better generalization, compared to widely-used optimizers such as Adam, Lion, and their cautious variants. Our results highlight Grams' potential as a transformative approach for efficient optimization in large-scale machine learning.