Goto

Collaborating Authors

 Cao, Xin


ACE: A Cardinality Estimator for Set-Valued Queries

arXiv.org Artificial Intelligence

Cardinality estimation is a fundamental functionality in database systems. Most existing cardinality estimators focus on handling predicates over numeric or categorical data. They have largely omitted an important data type, set-valued data, which frequently occur in contemporary applications such as information retrieval and recommender systems. The few existing estimators for such data either favor high-frequency elements or rely on a partial independence assumption, which limits their practical applicability. We propose ACE, an Attention-based Cardinality Estimator for estimating the cardinality of queries over set-valued data. We first design a distillation-based data encoder to condense the dataset into a compact matrix. We then design an attention-based query analyzer to capture correlations among query elements. To handle variable-sized queries, a pooling module is introduced, followed by a regression model (MLP) to generate final cardinality estimates. We evaluate ACE on three datasets with varying query element distributions, demonstrating that ACE outperforms the state-of-the-art competitors in terms of both accuracy and efficiency.


From Dense to Sparse: Event Response for Enhanced Residential Load Forecasting

arXiv.org Artificial Intelligence

Residential load forecasting (RLF) is crucial for resource scheduling in power systems. Most existing methods utilize all given load records (dense data) to indiscriminately extract the dependencies between historical and future time series. However, there exist important regular patterns residing in the event-related associations among different appliances (sparse knowledge), which have yet been ignored. In this paper, we propose an Event-Response Knowledge Guided approach (ERKG) for RLF by incorporating the estimation of electricity usage events for different appliances, mining event-related sparse knowledge from the load series. With ERKG, the event-response estimation enables portraying the electricity consumption behaviors of residents, revealing regular variations in appliance operational states. To be specific, ERKG consists of knowledge extraction and guidance: i) a forecasting model is designed for the electricity usage events by estimating appliance operational states, aiming to extract the event-related sparse knowledge; ii) a novel knowledge-guided mechanism is established by fusing such state estimates of the appliance events into the RLF model, which can give particular focuses on the patterns of users' electricity consumption behaviors. Notably, ERKG can flexibly serve as a plug-in module to boost the capability of existing forecasting models by leveraging event response. In numerical experiments, extensive comparisons and ablation studies have verified the effectiveness of our ERKG, e.g., over 8% MAE can be reduced on the tested state-of-the-art forecasting models.


Revisiting Attention Weights as Interpretations of Message-Passing Neural Networks

arXiv.org Artificial Intelligence

The self-attention mechanism has been adopted in several widely-used message-passing neural networks (MPNNs) (e.g., GATs), which adaptively controls the amount of information that flows along the edges of the underlying graph. This usage of attention has made such models a baseline for studies on explainable AI (XAI) since interpretations via attention have been popularized in various domains (e.g., natural language processing and computer vision). However, existing studies often use naive calculations to derive attribution scores from attention, and do not take the precise and careful calculation of edge attribution into consideration. In our study, we aim to fill the gap between the widespread usage of attention-enabled MPNNs and their potential in largely under-explored explainability, a topic that has been actively investigated in other areas. To this end, as the first attempt, we formalize the problem of edge attribution from attention weights in GNNs. Then, we propose GATT, an edge attribution calculation method built upon the computation tree. Through comprehensive experiments, we demonstrate the effectiveness of our proposed method when evaluating attributions from GATs. Conversely, we empirically validate that simply averaging attention weights over graph attention layers is insufficient to interpret the GAT model's behavior. Code is publicly available at https://github.com/jordan7186/GAtt/tree/main.


Deep Structural Knowledge Exploitation and Synergy for Estimating Node Importance Value on Heterogeneous Information Networks

arXiv.org Artificial Intelligence

Node importance estimation problem has been studied conventionally with homogeneous network topology analysis. To deal with network heterogeneity, a few recent methods employ graph neural models to automatically learn diverse sources of information. However, the major concern revolves around that their full adaptive learning process may lead to insufficient information exploration, thereby formulating the problem as the isolated node value prediction with underperformance and less interpretability. In this work, we propose a novel learning framework: SKES. Different from previous automatic learning designs, SKES exploits heterogeneous structural knowledge to enrich the informativeness of node representations. Based on a sufficiently uninformative reference, SKES estimates the importance value for any input node, by quantifying its disparity against the reference. This establishes an interpretable node importance computation paradigm. Furthermore, SKES dives deep into the understanding that "nodes with similar characteristics are prone to have similar importance values" whilst guaranteeing that such informativeness disparity between any different nodes is orderly reflected by the embedding distance of their associated latent features. Extensive experiments on three widely-evaluated benchmarks demonstrate the performance superiority of SKES over several recent competing methods.


Exploring Progress in Multivariate Time Series Forecasting: Comprehensive Benchmarking and Heterogeneity Analysis

arXiv.org Artificial Intelligence

Multivariate Time Series (MTS) widely exists in real-word complex systems, such as traffic and energy systems, making their forecasting crucial for understanding and influencing these systems. Recently, deep learning-based approaches have gained much popularity for effectively modeling temporal and spatial dependencies in MTS, specifically in Long-term Time Series Forecasting (LTSF) and Spatial-Temporal Forecasting (STF). However, the fair benchmarking issue and the choice of technical approaches have been hotly debated in related work. Such controversies significantly hinder our understanding of progress in this field. Thus, this paper aims to address these controversies to present insights into advancements achieved. To resolve benchmarking issues, we introduce BasicTS, a benchmark designed for fair comparisons in MTS forecasting. BasicTS establishes a unified training pipeline and reasonable evaluation settings, enabling an unbiased evaluation of over 30 popular MTS forecasting models on more than 18 datasets. Furthermore, we highlight the heterogeneity among MTS datasets and classify them based on temporal and spatial characteristics. We further prove that neglecting heterogeneity is the primary reason for generating controversies in technical approaches. Moreover, based on the proposed BasicTS and rich heterogeneous MTS datasets, we conduct an exhaustive and reproducible performance and efficiency comparison of popular models, providing insights for researchers in selecting and designing MTS forecasting models.


Node Feature Augmentation Vitaminizes Network Alignment

arXiv.org Artificial Intelligence

Abstract--Network alignment (NA) is the task of discovering node correspondences across multiple networks. Although NA methods have achieved remarkable success in a myriad of scenarios, their effectiveness is not without additional information such as prior anchor links and/or node features, which may not always be available due to privacy concerns or access restrictions. To tackle this challenge, we propose Grad-Align+, a novel NA method built upon a recent state-of-the-art NA method, the so-called Grad-Align, that gradually discovers a part of node pairs until all node pairs are found. In designing Grad-Align+, we account for how to augment node features in the sense of performing the NA task and how to design our NA method by maximally exploiting the augmented node features. To achieve this goal, Grad-Align+ consists of three key components: 1) centrality-based node feature augmentation (CNFA), 2) graph neural network (GNN)-aided embedding similarity calculation alongside the augmented node features, and 3) gradual NA with similarity calculation using aligned cross-network neighbor-pairs (ACNs). Through comprehensive experiments, we demonstrate that Grad-Align+ exhibits (a) the superiority over benchmark NA methods, (b) empirical validations as well as our theoretical findings to see the effectiveness of CNFA, (c) the influence of each component, (d) the robustness to network noises, and (e) the computational efficiency.


Graph Neural Networks Provably Benefit from Structural Information: A Feature Learning Perspective

arXiv.org Artificial Intelligence

Graph neural networks (GNNs) have pioneered advancements in graph representation learning, exhibiting superior feature learning and performance over multilayer perceptrons (MLPs) when handling graph inputs. However, understanding the feature learning aspect of GNNs is still in its initial stage. This study aims to bridge this gap by investigating the role of graph convolution within the context of feature learning theory in neural networks using gradient descent training. We provide a distinct characterization of signal learning and noise memorization in two-layer graph convolutional networks (GCNs), contrasting them with two-layer convolutional neural networks (CNNs). Our findings reveal that graph convolution significantly augments the benign overfitting regime over the counterpart CNNs, where signal learning surpasses noise memorization, by approximately factor $\sqrt{D}^{q-2}$, with $D$ denoting a node's expected degree and $q$ being the power of the ReLU activation function where $q > 2$. These findings highlight a substantial discrepancy between GNNs and MLPs in terms of feature learning and generalization capacity after gradient descent training, a conclusion further substantiated by our empirical simulations.


Criteria Tell You More than Ratings: Criteria Preference-Aware Light Graph Convolution for Effective Multi-Criteria Recommendation

arXiv.org Artificial Intelligence

The multi-criteria (MC) recommender system, which leverages MC rating information in a wide range of e-commerce areas, is ubiquitous nowadays. Surprisingly, although graph neural networks (GNNs) have been widely applied to develop various recommender systems due to GNN's high expressive capability in learning graph representations, it has been still unexplored how to design MC recommender systems with GNNs. In light of this, we make the first attempt towards designing a GNN-aided MC recommender system. Specifically, rather than straightforwardly adopting existing GNN-based recommendation methods, we devise a novel criteria preference-aware light graph convolution CPA-LGC method, which is capable of precisely capturing the criteria preference of users as well as the collaborative signal in complex high-order connectivities. To this end, we first construct an MC expansion graph that transforms user--item MC ratings into an expanded bipartite graph to potentially learn from the collaborative signal in MC ratings. Next, to strengthen the capability of criteria preference awareness, CPA-LGC incorporates newly characterized embeddings, including user-specific criteria-preference embeddings and item-specific criterion embeddings, into our graph convolution model. Through comprehensive evaluations using four real-world datasets, we demonstrate (a) the superiority over benchmark MC recommendation methods and benchmark recommendation methods using GNNs with tremendous gains, (b) the effectiveness of core components in CPA-LGC, and (c) the computational efficiency.


Exploiting Correlations Between Contexts and Definitions with Multiple Definition Modeling

arXiv.org Artificial Intelligence

Definition modeling is an important task in advanced natural language applications such as understanding and conversation. Since its introduction, it focus on generating one definition for a target word or phrase in a given context, which we refer to as Single Definition Modeling (SDM). However, this approach does not adequately model the correlations and patterns among different contexts and definitions of words. In addition, the creation of a training dataset for SDM requires significant human expertise and effort. In this paper, we carefully design a new task called Multiple Definition Modeling (MDM) that pool together all contexts and definition of target words. We demonstrate the ease of creating a model as well as multiple training sets automatically. % In the experiments, we demonstrate and analyze the benefits of MDM, including improving SDM's performance by using MDM as the pretraining task and its comparable performance in the zero-shot setting.


Weighted Sampling for Masked Language Modeling

arXiv.org Artificial Intelligence

Masked Language Modeling (MLM) is widely used to pretrain language models. The standard random masking strategy in MLM causes the pre-trained language models (PLMs) to be biased toward high-frequency tokens. Representation learning of rare tokens is poor and PLMs have limited performance on downstream tasks. To alleviate this frequency bias issue, we propose two simple and effective Weighted Sampling strategies for masking tokens based on the token frequency and training loss. We apply these two strategies to BERT and obtain Weighted-Sampled BERT (WSBERT). Experiments on the Semantic Textual Similarity benchmark (STS) show that WSBERT significantly improves sentence embeddings over BERT. Combining WSBERT with calibration methods and prompt learning further improves sentence embeddings. We also investigate fine-tuning WSBERT on the GLUE benchmark and show that Weighted Sampling also improves the transfer learning capability of the backbone PLM. We further analyze and provide insights into how WSBERT improves token embeddings.