Goto

Collaborating Authors

 Cao, Jun


SafePowerGraph-HIL: Real-Time HIL Validation of Heterogeneous GNNs for Bridging Sim-to-Real Gap in Power Grids

arXiv.org Artificial Intelligence

As machine learning (ML) techniques gain prominence in power system research, validating these methods' effectiveness under real-world conditions requires real-time hardware-in-the-loop (HIL) simulations. HIL simulation platforms enable the integration of computational models with physical devices, allowing rigorous testing across diverse scenarios critical to system resilience and reliability. In this study, we develop a SafePowerGraph-HIL framework that utilizes HIL simulations on the IEEE 9-bus system, modeled in Hypersim, to generate high-fidelity data, which is then transmitted in real-time via SCADA to an AWS cloud database before being input into a Heterogeneous Graph Neural Network (HGNN) model designed for power system state estimation and dynamic analysis. By leveraging Hypersim's capabilities, we simulate complex grid interactions, providing a robust dataset that captures critical parameters for HGNN training. The trained HGNN is subsequently validated using newly generated data under varied system conditions, demonstrating accuracy and robustness in predicting power system states. The results underscore the potential of integrating HIL with advanced neural network architectures to enhance the real-time operational capabilities of power systems. This approach represents a significant advancement toward the development of intelligent, adaptive control strategies that support the robustness and resilience of evolving power grids.


SafePowerGraph-LLM: Novel Power Grid Graph Embedding and Optimization with Large Language Models

arXiv.org Artificial Intelligence

Efficiently solving Optimal Power Flow (OPF) problems in power systems is crucial for operational planning and grid management. There is a growing need for scalable algorithms capable of handling the increasing variability, constraints, and uncertainties in modern power networks while providing accurate and fast solutions. To address this, machine learning techniques, particularly Graph Neural Networks (GNNs) have emerged as promising approaches. This letter introduces SafePowerGraph-LLM, the first framework explicitly designed for solving OPF problems using Large Language Models (LLM)s. The proposed approach combines graph and tabular representations of power grids to effectively query LLMs, capturing the complex relationships and constraints in power systems. A new implementation of in-context learning and fine-tuning protocols for LLMs is introduced, tailored specifically for the OPF problem. SafePowerGraph-LLM demonstrates reliable performances using off-the-shelf LLM. Our study reveals the impact of LLM architecture, size, and fine-tuning and demonstrates our framework's ability to handle realistic grid components and constraints.


SafePowerGraph: Safety-aware Evaluation of Graph Neural Networks for Transmission Power Grids

arXiv.org Artificial Intelligence

Power grids are critical infrastructures of paramount importance to modern society and their rapid evolution and interconnections has heightened the complexity of power systems (PS) operations. Traditional methods for grid analysis struggle with the computational demands of large-scale RES and ES integration, prompting the adoption of machine learning (ML) techniques, particularly Graph Neural Networks (GNNs). GNNs have proven effective in solving the alternating current (AC) Power Flow (PF) and Optimal Power Flow (OPF) problems, crucial for operational planning. However, existing benchmarks and datasets completely ignore safety and robustness requirements in their evaluation and never consider realistic safety-critical scenarios that most impact the operations of the power grids. We present SafePowerGraph, the first simulator-agnostic, safety-oriented framework and benchmark for GNNs in PS operations. SafePowerGraph integrates multiple PF and OPF simulators and assesses GNN performance under diverse scenarios, including energy price variations and power line outages. Our extensive experiments underscore the importance of self-supervised learning and graph attention architectures for GNN robustness. We provide at https://github.com/yamizi/SafePowerGraph our open-source repository, a comprehensive leaderboard, a dataset and model zoo and expect our framework to standardize and advance research in the critical field of GNN for power systems.


Xiwu: A Basis Flexible and Learnable LLM for High Energy Physics

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are undergoing a period of rapid updates and changes, with state-of-the-art (SOTA) model frequently being replaced. When applying LLMs to a specific scientific field, it's challenging to acquire unique domain knowledge while keeping the model itself advanced. To address this challenge, a sophisticated large language model system named as Xiwu has been developed, allowing you switch between the most advanced foundation models and quickly teach the model domain knowledge. In this work, we will report on the best practices for applying LLMs in the field of high-energy physics (HEP), including: a seed fission technology is proposed and some data collection and cleaning tools are developed to quickly obtain domain AI-Ready dataset; a just-in-time learning system is implemented based on the vector store technology; an on-the-fly fine-tuning system has been developed to facilitate rapid training under a specified foundation model. The results show that Xiwu can smoothly switch between foundation models such as LLaMA, Vicuna, ChatGLM and Grok-1. The trained Xiwu model is significantly outperformed the benchmark model on the HEP knowledge question-and-answering and code generation. This strategy significantly enhances the potential for growth of our model's performance, with the hope of surpassing GPT-4 as it evolves with the development of open-source models. This work provides a customized LLM for the field of HEP, while also offering references for applying LLM to other fields, the corresponding codes are available on Github.


PowerFlowMultiNet: Multigraph Neural Networks for Unbalanced Three-Phase Distribution Systems

arXiv.org Artificial Intelligence

Efficiently solving unbalanced three-phase power flow in distribution grids is pivotal for grid analysis and simulation. There is a pressing need for scalable algorithms capable of handling large-scale unbalanced power grids that can provide accurate and fast solutions. To address this, deep learning techniques, especially Graph Neural Networks (GNNs), have emerged. However, existing literature primarily focuses on balanced networks, leaving a critical gap in supporting unbalanced three-phase power grids. This letter introduces PowerFlowMultiNet, a novel multigraph GNN framework explicitly designed for unbalanced three-phase power grids. The proposed approach models each phase separately in a multigraph representation, effectively capturing the inherent asymmetry in unbalanced grids. A graph embedding mechanism utilizing message passing is introduced to capture spatial dependencies within the power system network. PowerFlowMultiNet outperforms traditional methods and other deep learning approaches in terms of accuracy and computational speed. Rigorous testing reveals significantly lower error rates and a notable hundredfold increase in computational speed for large power networks compared to model-based methods.


GigaST: A 10,000-hour Pseudo Speech Translation Corpus

arXiv.org Artificial Intelligence

This paper introduces GigaST, a large-scale pseudo speech translation (ST) corpus. We create the corpus by translating the text in GigaSpeech, an English ASR corpus, into German and Chinese. The training set is translated by a strong machine translation system and the test set is translated by human. ST models trained with an addition of our corpus obtain new state-of-the-art results on the MuST-C English-German benchmark test set. We provide a detailed description of the translation process and verify its quality. We make the translated text data public and hope to facilitate research in speech translation. Additionally, we also release the training scripts on NeurST to make it easy to replicate our systems. GigaST dataset is available at https://st-benchmark.github.io/resources/GigaST.


Augmentation-Free Graph Contrastive Learning of Invariant-Discriminative Representations

arXiv.org Artificial Intelligence

The pretasks are mainly built on mutual information estimation, which requires data augmentation to construct positive samples with similar semantics to learn invariant signals and negative samples with dissimilar semantics in order to empower representation discriminability. However, an appropriate data augmentation configuration depends heavily on lots of empirical trials such as choosing the compositions of data augmentation techniques and the corresponding hyperparameter settings. We propose an augmentation-free graph contrastive learning method, invariant-discriminative graph contrastive learning (iGCL), that does not intrinsically require negative samples. iGCL designs the invariant-discriminative loss (ID loss) to learn invariant and discriminative representations. On the one hand, ID loss learns invariant signals by directly minimizing the mean square error between the target samples and positive samples in the representation space. On the other hand, ID loss ensures that the representations are discriminative by an orthonormal constraint forcing the different dimensions of representations to be independent of each other. This prevents representations from collapsing to a point or subspace. Our theoretical analysis explains the effectiveness of ID loss from the perspectives of the redundancy reduction criterion, canonical correlation analysis, and information bottleneck principle. The experimental results demonstrate that iGCL outperforms all baselines on 5 node classification benchmark datasets. iGCL also shows superior performance for different label ratios and is capable of resisting graph attacks, which indicates that iGCL has excellent generalization and robustness. The source code is available at https://github.com/lehaifeng/T-GCN/tree/master/iGCL.


Curvature Graph Neural Network

arXiv.org Artificial Intelligence

Graph neural networks (GNNs) have achieved great success in many graph-based tasks. Much work is dedicated to empowering GNNs with the adaptive locality ability, which enables measuring the importance of neighboring nodes to the target node by a node-specific mechanism. However, the current node-specific mechanisms are deficient in distinguishing the importance of nodes in the topology structure. We believe that the structural importance of neighboring nodes is closely related to their importance in aggregation. In this paper, we introduce discrete graph curvature (the Ricci curvature) to quantify the strength of structural connection of pairwise nodes. And we propose Curvature Graph Neural Network (CGNN), which effectively improves the adaptive locality ability of GNNs by leveraging the structural property of graph curvature. To improve the adaptability of curvature to various datasets, we explicitly transform curvature into the weights of neighboring nodes by the necessary Negative Curvature Processing Module and Curvature Normalization Module. Then, we conduct numerous experiments on various synthetic datasets and real-world datasets. The experimental results on synthetic datasets show that CGNN effectively exploits the topology structure information, and the performance is improved significantly. CGNN outperforms the baselines on 5 dense node classification benchmark datasets. This study deepens the understanding of how to utilize advanced topology information and assign the importance of neighboring nodes from the perspective of graph curvature and encourages us to bridge the gap between graph theory and neural networks.


Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning

arXiv.org Artificial Intelligence

As the world seeks to become more sustainable, intelligent solutions are needed to increase the penetration of renewable energy. In this paper, the model-free deep reinforcement learning algorithm Rainbow Deep Q-Networks is used to control a battery in a small microgrid to perform energy arbitrage and more efficiently utilise solar and wind energy sources. The grid operates with its own demand and renewable generation based on a dataset collected at Keele University, as well as using dynamic energy pricing from a real wholesale energy market. Four scenarios are tested including using demand and price forecasting produced with local weather data. The algorithm and its subcomponents are evaluated against two continuous control benchmarks with Rainbow able to outperform all other method. This research shows the importance of using the distributional approach for reinforcement learning when working with complex environments and reward functions, as well as how it can be used to visualise and contextualise the agent's behaviour for real-world applications.


An Ontology-Based Artificial Intelligence Model for Medicine Side-Effect Prediction: Taking Traditional Chinese Medicine as An Example

arXiv.org Artificial Intelligence

Artificial intelligence is a modern technology that is utilized in various fields of medicine [1-3]. At the meantime, Chinese Traditional Medicine (TCM) is now widely considered as a promising alternative medicine for complementary treatment in cancers or chronic diseases due to the effective methodology practically developed by generations of doctors for almost 4000 years [4]. Based on previous verification, it is undeniable that there are many correlations between the TCM syndromes and western diseases, turning out novel approaches for enhancing the treatment efficiency and developing medicines regarding with TCM methodologies [5]. Unfortunately, hindered by the remarkable gap between the modern informatics and the fundament of TCM: antient Chinese philosophy, such correlations are still too elusive to be formulated precisely. Therefore, recently, in order to figure out the deep connection between modern science and TCM, the research combining TCM with AI for valid knowledge acquisition and mining attracts extremely attention, and hereby, leading to many profound works, such as ontology information system design [6], latent tree models design [7], TCM warehouse for AI application [8], and digital knowledge graph development [2]. On the other hand, researchers face, however, many difficulties in setting up AI for TCM in terms of directly interpreting TCM semantic system (almost recorded by ancient Chinese doctrines) into structured database. Because in this way, considerable workload must be undertaken by limited numbers of experts who are proficient in both AI and TCM to translate the TCM terminologies and then formulate the modern model thereof. In contrast, as shown in Figure 1, the digestion of using TCM methodology in dealing with issues of modern science, new medicine design for example, is relatively lacking and thus of significant worth to explore.