Calvert, Duncan
A Behavior Architecture for Fast Humanoid Robot Door Traversals
Calvert, Duncan, Penco, Luigi, Anderson, Dexton, Bialek, Tomasz, Chatterjee, Arghya, Mishra, Bhavyansh, Clark, Geoffrey, Bertrand, Sylvain, Griffin, Robert
Towards the role of humanoid robots as squad mates in urban operations and other domains, we identified doors as a major area lacking capability development. In this paper, we focus on the ability of humanoid robots to navigate and deal with doors. Human-sized doors are ubiquitous in many environment domains and the humanoid form factor is uniquely suited to operate and traverse them. We present an architecture which incorporates GPU accelerated perception and a tree based interactive behavior coordination system with a whole body motion and walking controller. Our system is capable of performing door traversals on a variety of door types. It supports rapid authoring of behaviors for unseen door types and techniques to achieve re-usability of those authored behaviors. The behaviors are modelled using trees and feature logical reactivity and action sequences that can be executed with layered concurrency to increase speed. Primitive actions are built on top of our existing whole body controller which supports manipulation while walking. We include a perception system using both neural networks and classical computer vision for door mechanism detection outside of the lab environment. We present operator-robot interdependence analysis charts to explore how human cognition is combined with artificial intelligence to produce complex robot behavior. Finally, we present and discuss real robot performances of fast door traversals on our Nadia humanoid robot. Videos online at https://www.youtube.com/playlist?list=PLXuyT8w3JVgMPaB5nWNRNHtqzRK8i68dy.
Mixed Reality Teleoperation Assistance for Direct Control of Humanoids
Penco, Luigi, Momose, Kazuhiko, McCrory, Stephen, Anderson, Dexton, Kitchel, Nicholas, Calvert, Duncan, Griffin, Robert J.
Abstract--Teleoperation plays a crucial role in enabling robot operations in challenging environments, yet existing limitations in effectiveness and accuracy necessitate the development of innovative strategies for improving teleoperated tasks. This article introduces a novel approach that utilizes mixed reality and assistive autonomy to enhance the efficiency and precision of humanoid robot teleoperation. By leveraging Probabilistic Movement Primitives, object detection, and Affordance Templates, the assistance combines user motion with autonomous capabilities, achieving task efficiency while maintaining humanlike robot motion. Experiments and feasibility studies on the Nadia robot confirm the effectiveness of the proposed framework. Supplementary video available at https://youtu.be/oN-FD6YnF2c.
Generating Humanoid Multi-Contact through Feasibility Visualization
McCrory, Stephen, Bertrand, Sylvain, Mohan, Achintya, Calvert, Duncan, Pratt, Jerry, Griffin, Robert
We present a feasibility-driven teleoperation framework designed to generate humanoid multi-contact maneuvers for use in unstructured environments. Our framework is designed for motions with arbitrary contact modes and postures. The operator configures a pre-execution preview robot through contact points and kinematic tasks. A fast estimation of the preview robot's quasi-static feasibility is performed by checking contact stability and collisions along an interpolated trajectory. A visualization of Center of Mass (CoM) stability margin, based on friction and actuation constraints, is displayed and can be previewed if the operator chooses to add or remove contacts. Contact points can be placed anywhere on a mesh approximation of the robot surface, enabling motions with knee or forearm contacts. We demonstrate our approach in simulation and hardware on a NASA Valkyrie humanoid, focusing on multi-contact trajectories which are challenging to generate autonomously or through alternative teleoperation approaches.
Authoring and Operating Humanoid Behaviors On the Fly using Coactive Design Principles
Calvert, Duncan, Anderson, Dexton, Bialek, Tomasz, McCrory, Stephen, Penco, Luigi, Pratt, Jerry, Griffin, Robert
Humanoid robots have the potential to perform useful tasks in a world built for humans. However, communicating intention and teaming with a humanoid robot is a multi-faceted and complex problem. In this paper, we tackle the problems associated with quickly and interactively authoring new robot behavior that works on real hardware. We bring the powerful concepts of Affordance Templates and Coactive Design methodology to this problem to attempt to solve and explain it. In our approach we use interactive stance and hand pose goals along with other types of actions to author humanoid robot behavior on the fly. We then describe how our operator interface works to author behaviors on the fly and provide interdependence analysis charts for task approach and door opening. We present timings from real robot performances for traversing a push door and doing a pick and place task on our Nadia humanoid robot.