Calinon, Sylvain
Learning Joint Space Reference Manifold for Reliable Physical Assistance
Razmjoo, Amirreza, Brecelj, Tilen, Savevska, Kristina, Ude, Aleš, Petrič, Tadej, Calinon, Sylvain
This paper presents a study on the use of the Talos humanoid robot for performing assistive sit-to-stand or stand-to-sit tasks. In such tasks, the human exerts a large amount of force (100--200 N) within a very short time (2--8 s), posing significant challenges in terms of human unpredictability and robot stability control. To address these challenges, we propose an approach for finding a spatial reference for the robot, which allows the robot to move according to the force exerted by the human and control its stability during the task. Specifically, we focus on the problem of finding a 1D manifold for the robot, while assuming a simple controller to guide its movement on this manifold. To achieve this, we use a functional representation to parameterize the manifold and solve an optimization problem that takes into account the robot's stability and the unpredictability of human behavior. We demonstrate the effectiveness of our approach through simulations and experiments with the Talos robot, showing robustness and adaptability.
Learning Robot Geometry as Distance Fields: Applications to Whole-body Manipulation
Li, Yiming, Zhang, Yan, Razmjoo, Amirreza, Calinon, Sylvain
In this work, we propose to learn robot geometry as distance fields (RDF), which extend the signed distance field (SDF) of the robot with joint configurations. Unlike existing methods that learn an implicit representation encoding joint space and Euclidean space together, the proposed RDF approach leverages the kinematic chain of the robot, which reduces the dimensionality and complexity of the problem, resulting in more accurate and reliable SDFs. A simple and flexible approach that exploits basis functions to represent SDFs for individual robot links is presented, providing a smoother representation and improved efficiency compared to neural networks. RDF is naturally continuous and differentiable, enabling its direct integration as cost functions in robot tasks. It also allows us to obtain high-precision robot surface points with any desired spatial resolution, with the capability of whole-body manipulation. We verify the effectiveness of our RDF representation by conducting various experiments in both simulations and with the 7-axis Franka Emika robot. We compare our approach against baseline methods and demonstrate its efficiency in dual-arm settings for tasks involving collision avoidance and whole-body manipulation. Project page: https://sites.google.com/view/lrdf/home}{https://sites.google.com/view/lrdf/home
Projection-based first-order constrained optimization solver for robotics
Girgin, Hakan, Löw, Tobias, Xue, Teng, Calinon, Sylvain
Robot programming tools ranging from inverse kinematics (IK) to model predictive control (MPC) are most often described as constrained optimization problems. Even though there are currently many commercially-available second-order solvers, robotics literature recently focused on efficient implementations and improvements over these solvers for real-time robotic applications. However, most often, these implementations stay problem-specific and are not easy to access or implement, or do not exploit the geometric aspect of the robotics problems. In this work, we propose to solve these problems using a fast, easy-to-implement first-order method that fully exploits the geometric constraints via Euclidean projections, called Augmented Lagrangian Spectral Projected Gradient Descent (ALSPG). We show that 1. using projections instead of full constraints and gradients improves the performance of the solver and 2. ALSPG stays competitive to the standard second-order methods such as iLQR in the unconstrained case. We showcase these results with IK and motion planning problems on simulated examples and with an MPC problem on a 7-axis manipulator experiment.
Online Multi-Contact Receding Horizon Planning via Value Function Approximation
Wang, Jiayi, Kim, Sanghyun, Lembono, Teguh Santoso, Du, Wenqian, Shim, Jaehyun, Samadi, Saeid, Wang, Ke, Ivan, Vladimir, Calinon, Sylvain, Vijayakumar, Sethu, Tonneau, Steve
Planning multi-contact motions in a receding horizon fashion requires a value function to guide the planning with respect to the future, e.g., building momentum to traverse large obstacles. Traditionally, the value function is approximated by computing trajectories in a prediction horizon (never executed) that foresees the future beyond the execution horizon. However, given the non-convex dynamics of multi-contact motions, this approach is computationally expensive. To enable online Receding Horizon Planning (RHP) of multi-contact motions, we find efficient approximations of the value function. Specifically, we propose a trajectory-based and a learning-based approach. In the former, namely RHP with Multiple Levels of Model Fidelity, we approximate the value function by computing the prediction horizon with a convex relaxed model. In the latter, namely Locally-Guided RHP, we learn an oracle to predict local objectives for locomotion tasks, and we use these local objectives to construct local value functions for guiding a short-horizon RHP. We evaluate both approaches in simulation by planning centroidal trajectories of a humanoid robot walking on moderate slopes, and on large slopes where the robot cannot maintain static balance. Our results show that locally-guided RHP achieves the best computation efficiency (95\%-98.6\% cycles converge online). This computation advantage enables us to demonstrate online receding horizon planning of our real-world humanoid robot Talos walking in dynamic environments that change on-the-fly.
Geometric Algebra for Optimal Control with Applications in Manipulation Tasks
Löw, Tobias, Calinon, Sylvain
Many problems in robotics are fundamentally problems of geometry, which lead to an increased research effort in geometric methods for robotics in recent years. The results were algorithms using the various frameworks of screw theory, Lie algebra and dual quaternions. A unification and generalization of these popular formalisms can be found in geometric algebra. The aim of this paper is to showcase the capabilities of geometric algebra when applied to robot manipulation tasks. In particular the modelling of cost functions for optimal control can be done uniformly across different geometric primitives leading to a low symbolic complexity of the resulting expressions and a geometric intuitiveness. We demonstrate the usefulness, simplicity and computational efficiency of geometric algebra in several experiments using a Franka Emika robot. The presented algorithms were implemented in c++20 and resulted in the publicly available library \textit{gafro}. The benchmark shows faster computation of the kinematics than state-of-the-art robotics libraries.
Contact Optimization with Learning from Demonstration: Application in Long-term Non-prehensile Planar Manipulation
Xue, Teng, Calinon, Sylvain
Long-term non-prehensile planar manipulation is a challenging task for planning and control, requiring determination of both continuous and discrete contact configurations, such as contact points and modes. This leads to the non-convexity and hybridness of contact optimization. To overcome these difficulties, we propose a novel approach that incorporates human demonstrations into trajectory optimization. We show that our approach effectively handles the hybrid combinatorial nature of the problem, mitigates the issues with local minima present in current state-of-the-art solvers, and requires only a small number of demonstrations while delivering robust generalization performance. We validate our results in simulation and demonstrate its applicability on a pusher-slider system with a real Franka Emika robot.
Demonstration-guided Optimal Control for Long-term Non-prehensile Planar Manipulation
Xue, Teng, Girgin, Hakan, Lembono, Teguh Santoso, Calinon, Sylvain
Long-term non-prehensile planar manipulation is a challenging task for robot planning and feedback control. It is characterized by underactuation, hybrid control, and contact uncertainty. One main difficulty is to determine both the continuous and discrete contact configurations, e.g., contact points and modes, which requires joint logical and geometrical reasoning. To tackle this issue, we propose a demonstration-guided hierarchical optimization framework to achieve offline task and motion planning (TAMP). Our work extends the formulation of the dynamics model of the pusher-slider system to include separation mode with face switching mechanism, and solves a warm-started TAMP problem by exploiting human demonstrations. We show that our approach can cope well with the local minima problems currently present in the state-of-the-art solvers and determine a valid solution to the task. We validate our results in simulation and demonstrate its applicability on a pusher-slider system with a real Franka Emika robot in the presence of external disturbances.
VP-STO: Via-point-based Stochastic Trajectory Optimization for Reactive Robot Behavior
Jankowski, Julius, Brudermüller, Lara, Hawes, Nick, Calinon, Sylvain
Abstract-- Achieving reactive robot behavior in complex dynamic environments is still challenging as it relies on being able to solve trajectory optimization problems quickly enough, such that we can replan the future motion at frequencies which are sufficiently high for the task at hand. We argue that current limitations in Model Predictive Control (MPC) for robot manipulators arise from inefficient, high-dimensional trajectory representations and the negligence of time-optimality in the trajectory optimization process. Therefore, we propose a motion optimization framework that optimizes jointly over space and time, generating smooth and timing-optimal robot trajectories in joint-space. Such task settings require performance. Compared to gradient-based optimization, the robot to be reactive to unforeseen changes in stochastic approaches typically also achieve higher robustness the environment, e.g., due to dynamic obstacles, as well to difficult reward landscapes due to their exploratory as to be robust and compliant when operating alongside properties [5].
Ergodic Exploration using Tensor Train: Applications in Insertion Tasks
Shetty, Suhan, Silvério, João, Calinon, Sylvain
In robotics, ergodic control extends the tracking principle by specifying a probability distribution over an area to cover instead of a trajectory to track. The original problem is formulated as a spectral multiscale coverage problem, typically requiring the spatial distribution to be decomposed as Fourier series. This approach does not scale well to control problems requiring exploration in search space of more than 2 dimensions. To address this issue, we propose the use of tensor trains, a recent low-rank tensor decomposition technique from the field of multilinear algebra. The proposed solution is efficient, both computationally and storage-wise, hence making it suitable for its online implementation in robotic systems. The approach is applied to a peg-in-hole insertion task requiring full 6D end-effector poses, implemented with a 7-axis Franka Emika Panda robot. In this experiment, ergodic exploration allows the task to be achieved without requiring the use of force/torque sensors.
Interaction-limited Inverse Reinforcement Learning
Troussard, Martin, Pignat, Emmanuel, Kamalaruban, Parameswaran, Calinon, Sylvain, Cevher, Volkan
This paper proposes an inverse reinforcement learning (IRL) framework to accelerate learning when the learner-teacher \textit{interaction} is \textit{limited} during training. Our setting is motivated by the realistic scenarios where a helpful teacher is not available or when the teacher cannot access the learning dynamics of the student. We present two different training strategies: Curriculum Inverse Reinforcement Learning (CIRL) covering the teacher's perspective, and Self-Paced Inverse Reinforcement Learning (SPIRL) focusing on the learner's perspective. Using experiments in simulations and experiments with a real robot learning a task from a human demonstrator, we show that our training strategies can allow a faster training than a random teacher for CIRL and than a batch learner for SPIRL.