Goto

Collaborating Authors

 Cali, Andrea


A Hybrid Approach to Query Answering under Expressive Datalog+/-

arXiv.org Artificial Intelligence

Datalog+/- is a family of ontology languages that combine good computational properties with high expressive power. Datalog+/- languages are provably able to capture the most relevant Semantic Web languages. In this paper we consider the class of weakly-sticky (WS) Datalog+/- programs, which allow for certain useful forms of joins in rule bodies as well as extending the well-known class of weakly-acyclic TGDs. So far, only non-deterministic algorithms were known for answering queries on WS Datalog+/- programs. We present novel deterministic query answering algorithms under WS Datalog+/-. In particular, we propose: (1) a bottom-up grounding algorithm based on a query-driven chase, and (2) a hybrid approach based on transforming a WS program into a so-called sticky one, for which query rewriting techniques are known. We discuss how our algorithms can be optimized and effectively applied for query answering in real-world scenarios.


Ontological Reasoning with F-logic Lite and its Extensions

AAAI Conferences

Answering queries posed over knowledge bases is a central problem in knowledge representation and database theory. In the database area, checking query containment is an important query optimization and schema integration technique. In knowledge representation it has been used for object classification, schema integration, service discovery, and more. In the presence of a knowledge base, the problem of query containment is strictly related to that of query answering; indeed, the two are reducible to each other; we focus on the latter, and our results immediately extend to the former.