Plotting

 Calderhead, Ben


Efficient structure learning with automatic sparsity selection for causal graph processes

arXiv.org Machine Learning

We propose a novel algorithm for efficiently computing a sparse directed adjacency matrix from a group of time series following a causal graph process. Our solution is scalable for both dense and sparse graphs and automatically selects the LASSO coefficient to obtain an appropriate number of edges in the adjacency matrix. Current state-of-the-art approaches rely on sparse-matrix-computation libraries to scale, and either avoid automatic selection of the LASSO penalty coefficient or rely on the prediction mean squared error, which is not directly related to the correct number of edges. Instead, we propose a cyclical coordinate descent algorithm that employs two new non-parametric error metrics to automatically select the LASSO coefficient. We demonstrate state-of-the-art performance of our algorithm on simulated stochastic block models and a real dataset of stocks from the S\&P$500$.


Implicit Probabilistic Integrators for ODEs

Neural Information Processing Systems

We introduce a family of implicit probabilistic integrators for initial value problems (IVPs), taking as a starting point the multistep Adams-Moulton method. The implicit construction allows for dynamic feedback from the forthcoming timestep, in contrast to previous probabilistic integrators, all of which are based on explicit methods. We begin with a concise survey of the rapidly-expanding field of probabilistic ODE solvers. We then introduce our method, which builds on and adapts the work of Conrad et al. (2016) and Teymur et al. (2016), and provide a rigorous proof of its well-definedness and convergence. We discuss the problem of the calibration of such integrators and suggest one approach. We give an illustrative example highlighting the effect of the use of probabilistic integrators--including our new method--in the setting of parameter inference within an inverse problem.


Implicit Probabilistic Integrators for ODEs

Neural Information Processing Systems

We introduce a family of implicit probabilistic integrators for initial value problems (IVPs), taking as a starting point the multistep Adams-Moulton method. The implicit construction allows for dynamic feedback from the forthcoming timestep, incontrast to previous probabilistic integrators, all of which are based on explicit methods. We begin with a concise survey of the rapidly-expanding field of probabilistic ODE solvers. We then introduce our method, which builds on and adapts the work of Conrad et al. (2016) and Teymur et al. (2016), and provide a rigorous proof of its well-definedness and convergence. We discuss the problem of the calibration of such integrators and suggest one approach. We give an illustrative example highlighting the effect of the use of probabilistic integrators--including our new method--in the setting of parameter inference within an inverse problem.


Probabilistic Linear Multistep Methods

Neural Information Processing Systems

We present a derivation and theoretical investigation of the Adams-Bashforth and Adams-Moulton family of linear multistep methods for solving ordinary differential equations, starting from a Gaussian process (GP) framework. In the limit, this formulation coincides with the classical deterministic methods, which have been used as higher-order initial value problem solvers for over a century. Furthermore, the natural probabilistic framework provided by the GP formulation allows us to derive probabilistic versions of these methods, in the spirit of a number of other probabilistic ODE solvers presented in the recent literature. In contrast to higher-order Runge-Kutta methods, which require multiple intermediate function evaluations per step, Adams family methods make use of previous function evaluations, so that increased accuracy arising from a higher-order multistep approach comes at very little additional computational cost. We show that through a careful choice of covariance function for the GP, the posterior mean and standard deviation over the numerical solution can be made to exactly coincide with the value given by the deterministic method and its local truncation error respectively. We provide a rigorous proof of the convergence of these new methods, as well as an empirical investigation (up to fifth order) demonstrating their convergence rates in practice.


Probabilistic Linear Multistep Methods

arXiv.org Machine Learning

We present a derivation and theoretical investigation of the Adams-Bashforth and Adams-Moulton family of linear multistep methods for solving ordinary differential equations, starting from a Gaussian process (GP) framework. In the limit, this formulation coincides with the classical deterministic methods, which have been used as higher-order initial value problem solvers for over a century. Furthermore, the natural probabilistic framework provided by the GP formulation allows us to derive probabilistic versions of these methods, in the spirit of a number of other probabilistic ODE solvers presented in the recent literature. In contrast to higher-order Runge-Kutta methods, which require multiple intermediate function evaluations per step, Adams family methods make use of previous function evaluations, so that increased accuracy arising from a higher-order multistep approach comes at very little additional computational cost. We show that through a careful choice of covariance function for the GP, the posterior mean and standard deviation over the numerical solution can be made to exactly coincide with the value given by the deterministic method and its local truncation error respectively. We provide a rigorous proof of the convergence of these new methods, as well as an empirical investigation (up to fifth order) demonstrating their convergence rates in practice.


Sparse Approximate Manifolds for Differential Geometric MCMC

Neural Information Processing Systems

One of the enduring challenges in Markov chain Monte Carlo methodology is the development of proposal mechanisms to make moves distant from the current point, that are accepted with high probability and at low computational cost. The recent introduction of locally adaptive MCMC methods based on the natural underlying Riemannian geometry of such models goes some way to alleviating these problems for certain classes of models for which the metric tensor is analytically tractable, however computational efficiency is not assured due to the necessity of potentially high-dimensional matrix operations at each iteration. In this paper we firstly investigate a sampling-based approach for approximating the metric tensor and suggest a valid MCMC algorithm that extends the applicability of Riemannian Manifold MCMC methods to statistical models that do not admit an analytically computable metric tensor. Secondly, we show how the approximation scheme we consider naturally motivates the use of l1 regularisation to improve estimates and obtain a sparse approximate inverse of the metric, which enables stable and sparse approximations of the local geometry to be made. We demonstrate the application of this algorithm for inferring the parameters of a realistic system of ordinary differential equations using a biologically motivated robust student-t error model, for which the expected Fisher Information is analytically intractable.


Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes

Neural Information Processing Systems

Identification and comparison of nonlinear dynamical systems using noisy and sparse experimental data is a vital task in many fields, however current methods are computationally expensive and prone to error due in part to the nonlinear nature of the likelihood surfaces induced. We present an accelerated sampling procedure which enables Bayesian inference of parameters in nonlinear ordinary and delay differential equations via the novel use of Gaussian processes (GP). Our method involves GP regression over time-series data, and the resulting derivative and time delay estimates make parameter inference possible without solving the dynamical system explicitly, resulting in dramatic savings of computational time. We demonstrate the speed and statistical accuracy of our approach using examples of both ordinary and delay differential equations, and provide a comprehensive comparison with current state of the art methods.