Goto

Collaborating Authors

 Calandra, Roberto


Evetac: An Event-based Optical Tactile Sensor for Robotic Manipulation

arXiv.org Artificial Intelligence

Optical tactile sensors have recently become popular. They provide high spatial resolution, but struggle to offer fine temporal resolutions. To overcome this shortcoming, we study the idea of replacing the RGB camera with an event-based camera and introduce a new event-based optical tactile sensor called Evetac. Along with hardware design, we develop touch processing algorithms to process its measurements online at 1000 Hz. We devise an efficient algorithm to track the elastomer's deformation through the imprinted markers despite the sensor's sparse output. Benchmarking experiments demonstrate Evetac's capabilities of sensing vibrations up to 498 Hz, reconstructing shear forces, and significantly reducing data rates compared to RGB optical tactile sensors. Moreover, Evetac's output and the marker tracking provide meaningful features for learning data-driven slip detection and prediction models. The learned models form the basis for a robust and adaptive closed-loop grasp controller capable of handling a wide range of objects. We believe that fast and efficient event-based tactile sensors like Evetac will be essential for bringing human-like manipulation capabilities to robotics. The sensor design is open-sourced at https://sites.google.com/view/evetac .


A Unified View on Solving Objective Mismatch in Model-Based Reinforcement Learning

arXiv.org Artificial Intelligence

Model-based Reinforcement Learning (MBRL) aims to make agents more sample-efficient, adaptive, and explainable by learning an explicit model of the environment. While the capabilities of MBRL agents have significantly improved in recent years, how to best learn the model is still an unresolved question. The majority of MBRL algorithms aim at training the model to make accurate predictions about the environment and subsequently using the model to determine the most rewarding actions. However, recent research has shown that model predictive accuracy is often not correlated with action quality, tracing the root cause to the \emph{objective mismatch} between accurate dynamics model learning and policy optimization of rewards. A number of interrelated solution categories to the objective mismatch problem have emerged as MBRL continues to mature as a research area. In this work, we provide an in-depth survey of these solution categories and propose a taxonomy to foster future research.


Deep Reinforcement Learning for the Joint Control of Traffic Light Signaling and Vehicle Speed Advice

arXiv.org Artificial Intelligence

Traffic congestion in dense urban centers presents an economical and environmental burden. In recent years, the availability of vehicle-to-anything communication allows for the transmission of detailed vehicle states to the infrastructure that can be used for intelligent traffic light control. The other way around, the infrastructure can provide vehicles with advice on driving behavior, such as appropriate velocities, which can improve the efficacy of the traffic system. Several research works applied deep reinforcement learning to either traffic light control or vehicle speed advice. In this work, we propose a first attempt to jointly learn the control of both. We show this to improve the efficacy of traffic systems. In our experiments, the joint control approach reduces average vehicle trip delays, w.r.t. controlling only traffic lights, in eight out of eleven benchmark scenarios. Analyzing the qualitative behavior of the vehicle speed advice policy, we observe that this is achieved by smoothing out the velocity profile of vehicles nearby a traffic light. Learning joint control of traffic signaling and speed advice in the real world could help to reduce congestion and mitigate the economical and environmental repercussions of today's traffic systems.


Self-Supervised Visuo-Tactile Pretraining to Locate and Follow Garment Features

arXiv.org Artificial Intelligence

Humans make extensive use of vision and touch as complementary senses, with vision providing global information about the scene and touch measuring local information during manipulation without suffering from occlusions. While prior work demonstrates the efficacy of tactile sensing for precise manipulation of deformables, they typically rely on supervised, human-labeled datasets. We propose Self-Supervised Visuo-Tactile Pretraining (SSVTP), a framework for learning multi-task visuo-tactile representations in a self-supervised manner through cross-modal supervision. We design a mechanism that enables a robot to autonomously collect precisely spatially-aligned visual and tactile image pairs, then train visual and tactile encoders to embed these pairs into a shared latent space using cross-modal contrastive loss. We apply this latent space to downstream perception and control of deformable garments on flat surfaces, and evaluate the flexibility of the learned representations without fine-tuning on 5 tasks: feature classification, contact localization, anomaly detection, feature search from a visual query (e.g., garment feature localization under occlusion), and edge following along cloth edges. The pretrained representations achieve a 73-100% success rate on these 5 tasks.


Automated Reinforcement Learning (AutoRL): A Survey and Open Problems

Journal of Artificial Intelligence Research

The combination of Reinforcement Learning (RL) with deep learning has led to a series of impressive feats, with many believing (deep) RL provides a path towards generally capable agents. However, the success of RL agents is often highly sensitive to design choices in the training process, which may require tedious and error-prone manual tuning. This makes it challenging to use RL for new problems and also limits its full potential. In many other areas of machine learning, AutoML has shown that it is possible to automate such design choices, and AutoML has also yielded promising initial results when applied to RL. However, Automated Reinforcement Learning (AutoRL) involves not only standard applications of AutoML but also includes additional challenges unique to RL, that naturally produce a different set of methods. As such, AutoRL has been emerging as an important area of research in RL, providing promise in a variety of applications from RNA design to playing games, such as Go. Given the diversity of methods and environments considered in RL, much of the research has been conducted in distinct subfields, ranging from meta-learning to evolution. In this survey, we seek to unify the field of AutoRL, provide a common taxonomy, discuss each area in detail and pose open problems of interest to researchers going forward.


Towards Learning to Play Piano with Dexterous Hands and Touch

arXiv.org Machine Learning

The virtuoso plays the piano with passion, poetry and extraordinary technical ability. As Liszt said (a virtuoso)must call up scent and blossom, and breathe the breath of life. The strongest robots that can play a piano are based on a combination of specialized robot hands/piano and hardcoded planning algorithms. In contrast to that, in this paper, we demonstrate how an agent can learn directly from machine-readable music score to play the piano with dexterous hands on a simulated piano using reinforcement learning (RL) from scratch. We demonstrate the RL agents can not only find the correct key position but also deal with various rhythmic, volume and fingering, requirements. We achieve this by using a touch-augmented reward and a novel curriculum of tasks. We conclude by carefully studying the important aspects to enable such learning algorithms and that can potentially shed light on future research in this direction.


MBRL-Lib: A Modular Library for Model-based Reinforcement Learning

arXiv.org Artificial Intelligence

Model-based reinforcement learning is a compelling framework for data-efficient learning of agents that interact with the world. This family of algorithms has many subcomponents that need to be carefully selected and tuned. As a result the entry-bar for researchers to approach the field and to deploy it in real-world tasks can be daunting. In this paper, we present MBRL-Lib -- a machine learning library for model-based reinforcement learning in continuous state-action spaces based on PyTorch. MBRL-Lib is designed as a platform for both researchers, to easily develop, debug and compare new algorithms, and non-expert user, to lower the entry-bar of deploying state-of-the-art algorithms. MBRL-Lib is open-source at https://github.com/facebookresearch/mbrl-lib.


On the Importance of Hyperparameter Optimization for Model-based Reinforcement Learning

arXiv.org Artificial Intelligence

Model-based Reinforcement Learning (MBRL) is a promising framework for learning control in a data-efficient manner. MBRL algorithms can be fairly complex due to the separate dynamics modeling and the subsequent planning algorithm, and as a result, they often possess tens of hyperparameters and architectural choices. For this reason, MBRL typically requires significant human expertise before it can be applied to new problems and domains. To alleviate this problem, we propose to use automatic hyperparameter optimization (HPO). We demonstrate that this problem can be tackled effectively with automated HPO, which we demonstrate to yield significantly improved performance compared to human experts. In addition, we show that tuning of several MBRL hyperparameters dynamically, i.e. during the training itself, further improves the performance compared to using static hyperparameters which are kept fixed for the whole training. Finally, our experiments provide valuable insights into the effects of several hyperparameters, such as plan horizon or learning rate and their influence on the stability of training and resulting rewards.


Model-Invariant State Abstractions for Model-Based Reinforcement Learning

arXiv.org Artificial Intelligence

Accuracy and generalization of dynamics models is key to the success of model-based reinforcement learning (MBRL). As the complexity of tasks increases, learning dynamics models becomes increasingly sample inefficient for MBRL methods. However, many tasks also exhibit sparsity in the dynamics, i.e., actions have only a local effect on the system dynamics. In this paper, we exploit this property with a causal invariance perspective in the single-task setting, introducing a new type of state abstraction called \textit{model-invariance}. Unlike previous forms of state abstractions, a model-invariance state abstraction leverages causal sparsity over state variables. This allows for generalization to novel combinations of unseen values of state variables, something that non-factored forms of state abstractions cannot do. We prove that an optimal policy can be learned over this model-invariance state abstraction. Next, we propose a practical method to approximately learn a model-invariant representation for complex domains. We validate our approach by showing improved modeling performance over standard maximum likelihood approaches on challenging tasks, such as the MuJoCo-based Humanoid. Furthermore, within the MBRL setting we show strong performance gains w.r.t. sample efficiency across a host of other continuous control tasks.


TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

arXiv.org Machine Learning

Simulators perform an important role in prototyping, debugging and benchmarking new advances in robotics and learning for control. Although many physics engines exist, some aspects of the real-world are harder than others to simulate. One of the aspects that have so far eluded accurate simulation is touch sensing. To address this gap, we present TACTO -- a fast, flexible and open-source simulator for vision-based tactile sensors. This simulator allows to render realistic high-resolution touch readings at hundreds of frames per second, and can be easily configured to simulate different vision-based tactile sensors, including GelSight, DIGIT and OmniTact. In this paper, we detail the principles that drove the implementation of TACTO and how they are reflected in its architecture. We demonstrate TACTO on a perceptual task, by learning to predict grasp stability using touch from 1 million grasps, and on a marble manipulation control task. We believe that TACTO is a step towards the widespread adoption of touch sensing in robotic applications, and to enable machine learning practitioners interested in multi-modal learning and control. TACTO is open-source at https://github.com/facebookresearch/tacto.