Cai, Zhipeng
Graph Convolutional Network with Connectivity Uncertainty for EEG-based Emotion Recognition
Gao, Hongxiang, Wang, Xiangyao, Chen, Zhenghua, Wu, Min, Cai, Zhipeng, Zhao, Lulu, Li, Jianqing, Liu, Chengyu
Automatic emotion recognition based on multichannel Electroencephalography (EEG) holds great potential in advancing human-computer interaction. However, several significant challenges persist in existing research on algorithmic emotion recognition. These challenges include the need for a robust model to effectively learn discriminative node attributes over long paths, the exploration of ambiguous topological information in EEG channels and effective frequency bands, and the mapping between intrinsic data qualities and provided labels. To address these challenges, this study introduces the distribution-based uncertainty method to represent spatial dependencies and temporal-spectral relativeness in EEG signals based on Graph Convolutional Network (GCN) architecture that adaptively assigns weights to functional aggregate node features, enabling effective long-path capturing while mitigating over-smoothing phenomena. Moreover, the graph mixup technique is employed to enhance latent connected edges and mitigate noisy label issues. Furthermore, we integrate the uncertainty learning method with deep GCN weights in a one-way learning fashion, termed Connectivity Uncertainty GCN (CU-GCN). We evaluate our approach on two widely used datasets, namely SEED and SEEDIV, for emotion recognition tasks. The experimental results demonstrate the superiority of our methodology over previous methods, yielding positive and significant improvements. Ablation studies confirm the substantial contributions of each component to the overall performance.
Resource-Adaptive Newton's Method for Distributed Learning
Chen, Shuzhen, Yuan, Yuan, Tao, Youming, Cai, Zhipeng, Yu, Dongxiao
Distributed stochastic optimization methods based on Newton's method offer significant advantages over first-order methods by leveraging curvature information for improved performance. However, the practical applicability of Newton's method is hindered in large-scale and heterogeneous learning environments due to challenges such as high computation and communication costs associated with the Hessian matrix, sub-model diversity, staleness in training, and data heterogeneity. To address these challenges, this paper introduces a novel and efficient algorithm called RANL, which overcomes the limitations of Newton's method by employing a simple Hessian initialization and adaptive assignments of training regions. The algorithm demonstrates impressive convergence properties, which are rigorously analyzed under standard assumptions in stochastic optimization. The theoretical analysis establishes that RANL achieves a linear convergence rate while effectively adapting to available resources and maintaining high efficiency. Unlike traditional first-order methods, RANL exhibits remarkable independence from the condition number of the problem and eliminates the need for complex parameter tuning. These advantages make RANL a promising approach for distributed stochastic optimization in practical scenarios.
Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image
Yin, Wei, Zhang, Chi, Chen, Hao, Cai, Zhipeng, Yu, Gang, Wang, Kaixuan, Chen, Xiaozhi, Shen, Chunhua
Reconstructing accurate 3D scenes from images is a long-standing vision task. Due to the ill-posedness of the single-image reconstruction problem, most well-established methods are built upon multi-view geometry. State-of-the-art (SOTA) monocular metric depth estimation methods can only handle a single camera model and are unable to perform mixed-data training due to the metric ambiguity. Meanwhile, SOTA monocular methods trained on large mixed datasets achieve zero-shot generalization by learning affine-invariant depths, which cannot recover real-world metrics. In this work, we show that the key to a zero-shot single-view metric depth model lies in the combination of large-scale data training and resolving the metric ambiguity from various camera models. We propose a canonical camera space transformation module, which explicitly addresses the ambiguity problems and can be effortlessly plugged into existing monocular models. Equipped with our module, monocular models can be stably trained with over 8 million images with thousands of camera models, resulting in zero-shot generalization to in-the-wild images with unseen camera settings. Experiments demonstrate SOTA performance of our method on 7 zero-shot benchmarks. Notably, our method won the championship in the 2nd Monocular Depth Estimation Challenge. Our method enables the accurate recovery of metric 3D structures on randomly collected internet images, paving the way for plausible single-image metrology. The potential benefits extend to downstream tasks, which can be significantly improved by simply plugging in our model. For example, our model relieves the scale drift issues of monocular-SLAM (Fig. 1), leading to high-quality metric scale dense mapping. The code is available at https://github.com/YvanYin/Metric3D.
A Black-box NLP Classifier Attacker
Liu, Yueyang, Lee, Hunmin, Cai, Zhipeng
Deep neural networks have a wide range of applications in solving various real-world tasks and have achieved satisfactory results, in domains such as computer vision, image classification, and natural language processing. Meanwhile, the security and robustness of neural networks have become imperative, as diverse researches have shown the vulnerable aspects of neural networks. Case in point, in Natural language processing tasks, the neural network may be fooled by an attentively modified text, which has a high similarity to the original one. As per previous research, most of the studies are focused on the image domain; Different from image adversarial attacks, the text is represented in a discrete sequence, traditional image attack methods are not applicable in the NLP field. In this paper, we propose a word-level NLP sentiment classifier attack model, which includes a self-attention mechanism-based word selection method and a greedy search algorithm for word substitution. We experiment with our attack model by attacking GRU and 1D-CNN victim models on IMDB datasets. Experimental results demonstrate that our model achieves a higher attack success rate and more efficient than previous methods due to the efficient word selection algorithms are employed and minimized the word substitute number. Also, our model is transferable, which can be used in the image domain with several modifications.
Efficient Recruitment Strategy for Collaborative Mobile Crowd Sensing Based on GCN Trustworthiness Prediction
Zhan, Zhongwei, Wang, Yingjie, Duan, Peiyong, Sai, Akshita Maradapu Vera Venkata, Liu, Zhaowei, Xiang, Chaocan, Tong, Xiangrong, Wang, Weilong, Cai, Zhipeng
Collaborative Mobile Crowd Sensing (CMCS) enhances data quality and coverage by promoting teamwork in task sensing, with worker recruitment representing a complex multi-objective optimization problem. Existing strategies mainly focus on the characteristics of workers themselves, neglecting the asymmetric trust relationships between them, which affects the rationality of task utility evaluation. To address this, this paper first employs the Mini-Batch K-Means clustering algorithm and deploys edge servers to enable efficient distributed worker recruitment. Historical data and task requirements are utilized to obtain workers' ability types and distances. A trust-directed graph in the worker's social network is input into the Graph Convolutional Network (GCN) framework for training, capturing asymmetric trustworthiness between worker pairs. Privacy leakage is prevented in CMCS scenarios through high trust values between workers. Ultimately, an undirected recruitment graph is constructed using workers' abilities, trust values, and distance weights, transforming the worker recruitment problem into a Maximum Weight Average Subgraph Problem (MWASP). A Tabu Search Recruitment (TSR) algorithm is proposed to rationally recruit a balanced multi-objective optimal task utility worker set for each task. Extensive simulation experiments on four real-world datasets demonstrate the effectiveness of the proposed strategy, outperforming other strategies.
Revisiting Test Time Adaptation under Online Evaluation
Alfarra, Motasem, Itani, Hani, Pardo, Alejandro, Alhuwaider, Shyma, Ramazanova, Merey, Pérez, Juan C., Cai, Zhipeng, Müller, Matthias, Ghanem, Bernard
This paper proposes a novel online evaluation protocol for Test Time Adaptation (TTA) methods, which penalizes slower methods by providing them with fewer samples for adaptation. TTA methods leverage unlabeled data at test time to adapt to distribution shifts. Though many effective methods have been proposed, their impressive performance usually comes at the cost of significantly increased computation budgets. Current evaluation protocols overlook the effect of this extra computation cost, affecting their real-world applicability. To address this issue, we propose a more realistic evaluation protocol for TTA methods, where data is received in an online fashion from a constant-speed data stream, thereby accounting for the method's adaptation speed. We apply our proposed protocol to benchmark several TTA methods on multiple datasets and scenarios. Extensive experiments shows that, when accounting for inference speed, simple and fast approaches can outperform more sophisticated but slower methods. For example, SHOT from 2020 outperforms the state-of-the-art method SAR from 2023 under our online setting. Our online evaluation protocol emphasizes the need for developing TTA methods that are efficient and applicable in realistic settings.
SimCS: Simulation for Online Domain-Incremental Continual Segmentation
Alfarra, Motasem, Cai, Zhipeng, Bibi, Adel, Ghanem, Bernard, Müller, Matthias
Continual Learning is a step towards lifelong intelligence where models continuously learn from recently collected data without forgetting previous knowledge. Existing continual learning approaches mostly focus on image classification in the class-incremental setup with clear task boundaries and unlimited computational budget. This work explores Online Domain-Incremental Continual Segmentation~(ODICS), a real-world problem that arises in many applications, \eg, autonomous driving. In ODICS, the model is continually presented with batches of densely labeled images from different domains; computation is limited and no information about the task boundaries is available. In autonomous driving, this may correspond to the realistic scenario of training a segmentation model over time on a sequence of cities. We analyze several existing continual learning methods and show that they do not perform well in this setting despite working well in class-incremental segmentation. We propose SimCS, a parameter-free method complementary to existing ones that leverages simulated data as a continual learning regularizer. Extensive experiments show consistent improvements over different types of continual learning methods that use regularizers and even replay.
Collaborative City Digital Twin For Covid-19 Pandemic: A Federated Learning Solution
Pang, Junjie, Li, Jianbo, Xie, Zhenzhen, Huang, Yan, Cai, Zhipeng
In this work, we propose a collaborative city digital twin based on FL, a novel paradigm that allowing multiple city DT to share the local strategy and status in a timely manner. In particular, an FL central server manages the local updates of multiple collaborators (city DT), provides a global model which is trained in multiple iterations at different city DT systems, until the model gains the correlations between various response plan and infection trend. That means, a collaborative city DT paradigm based on FL techniques can obtain knowledge and patterns from multiple DTs, and eventually establish a `global view' for city crisis management. Meanwhile, it also helps to improve each city digital twin selves by consolidating other DT's respective data without violating privacy rules. To validate the proposed solution, we take COVID-19 pandemic as a case study. The experimental results on the real dataset with various response plan validate our proposed solution and demonstrate the superior performance.
Adversarial Privacy Preserving Graph Embedding against Inference Attack
Li, Kaiyang, Luo, Guangchun, Ye, Yang, Li, Wei, Ji, Shihao, Cai, Zhipeng
Recently, the surge in popularity of Internet of Things (IoT), mobile devices, social media, etc. has opened up a large source for graph data. Graph embedding has been proved extremely useful to learn low-dimensional feature representations from graph structured data. These feature representations can be used for a variety of prediction tasks from node classification to link prediction. However, existing graph embedding methods do not consider users' privacy to prevent inference attacks. That is, adversaries can infer users' sensitive information by analyzing node representations learned from graph embedding algorithms. In this paper, we propose Adversarial Privacy Graph Embedding (APGE), a graph adversarial training framework that integrates the disentangling and purging mechanisms to remove users' private information from learned node representations. The proposed method preserves the structural information and utility attributes of a graph while concealing users' private attributes from inference attacks. Extensive experiments on real-world graph datasets demonstrate the superior performance of APGE compared to the state-of-the-arts. Our source code can be found at https://github.com/uJ62JHD/Privacy-Preserving-Social-Network-Embedding.