Cai, Yujun
Tricking Retrievers with Influential Tokens: An Efficient Black-Box Corpus Poisoning Attack
Wang, Cheng, Wang, Yiwei, Cai, Yujun, Hooi, Bryan
Retrieval-augmented generation (RAG) systems enhance large language models by incorporating external knowledge, addressing issues like outdated internal knowledge and hallucination. However, their reliance on external knowledge bases makes them vulnerable to corpus poisoning attacks, where adversarial passages can be injected to manipulate retrieval results. Existing methods for crafting such passages, such as random token replacement or training inversion models, are often slow and computationally expensive, requiring either access to retriever's gradients or large computational resources. To address these limitations, we propose Dynamic Importance-Guided Genetic Algorithm (DIGA), an efficient black-box method that leverages two key properties of retrievers: insensitivity to token order and bias towards influential tokens. By focusing on these characteristics, DIGA dynamically adjusts its genetic operations to generate effective adversarial passages with significantly reduced time and memory usage. Our experimental evaluation shows that DIGA achieves superior efficiency and scalability compared to existing methods, while maintaining comparable or better attack success rates across multiple datasets.
Structured Outputs Enable General-Purpose LLMs to be Medical Experts
Guo, Guangfu, Zhang, Kai, Hoo, Bryan, Cai, Yujun, Lu, Xiaoqian, Peng, Nanyun, Wang, Yiwei
Medical question-answering (QA) is a critical task for evaluating how effectively large language models (LLMs) encode clinical knowledge and assessing their potential applications in medicine. Despite showing promise on multiple-choice tests, LLMs frequently struggle with open-ended medical questions, producing responses with dangerous hallucinations or lacking comprehensive coverage of critical aspects. Existing approaches attempt to address these challenges through domain-specific fine-tuning, but this proves resource-intensive and difficult to scale across models. To improve the comprehensiveness and factuality of medical responses, we propose a novel approach utilizing structured medical reasoning. Our method guides LLMs through an seven-step cognitive process inspired by clinical diagnosis, enabling more accurate and complete answers without additional training. Experiments on the MedLFQA benchmark demonstrate that our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models. Notably, this improvement transfers to smaller models, highlighting the method's efficiency and scalability. Our code and datasets are available.
Fact or Guesswork? Evaluating Large Language Model's Medical Knowledge with Structured One-Hop Judgment
Li, Jiaxi, Wang, Yiwei, Zhang, Kai, Cai, Yujun, Hooi, Bryan, Peng, Nanyun, Chang, Kai-Wei, Lu, Jin
Large language models (LLMs) have been widely adopted in various downstream task domains. However, their ability to directly recall and apply factual medical knowledge remains under-explored. Most existing medical QA benchmarks assess complex reasoning or multi-hop inference, making it difficult to isolate LLMs' inherent medical knowledge from their reasoning capabilities. Given the high-stakes nature of medical applications, where incorrect information can have critical consequences, it is essential to evaluate how well LLMs encode, retain, and recall fundamental medical facts. To bridge this gap, we introduce the Medical Knowledge Judgment, a dataset specifically designed to measure LLMs' one-hop factual medical knowledge. MKJ is constructed from the Unified Medical Language System (UMLS), a large-scale repository of standardized biomedical vocabularies and knowledge graphs. We frame knowledge assessment as a binary judgment task, requiring LLMs to verify the correctness of medical statements extracted from reliable and structured knowledge sources. Our experiments reveal that LLMs struggle with factual medical knowledge retention, exhibiting significant performance variance across different semantic categories, particularly for rare medical conditions. Furthermore, LLMs show poor calibration, often being overconfident in incorrect answers. To mitigate these issues, we explore retrieval-augmented generation, demonstrating its effectiveness in improving factual accuracy and reducing uncertainty in medical decision-making.
Enhancing LLM Character-Level Manipulation via Divide and Conquer
Xiong, Zhen, Cai, Yujun, Hooi, Bryan, Peng, Nanyun, Chang, Kai-Wei, Li, Zhecheng, Wang, Yiwei
Large Language Models (LLMs) have demonstrated strong generalization capabilities across a wide range of natural language processing (NLP) tasks. However, they exhibit notable weaknesses in character-level string manipulation, struggling with fundamental operations such as character deletion, insertion, and substitution. These challenges stem primarily from tokenization constraints, despite the critical role of such operations in data preprocessing and code generation. Through systematic analysis, we derive two key insights: (1) LLMs face significant difficulties in leveraging intrinsic token knowledge for character-level reasoning, and (2) atomized word structures can substantially enhance LLMs' ability to process token-level structural information. Building on these insights, we propose Character-Level Manipulation via Divide and Conquer, a novel approach designed to bridge the gap between token-level processing and character-level manipulation. Our method decomposes complex operations into explicit character-level subtasks coupled with controlled token reconstruction phases, leading to significant improvements in accuracy. Without additional training, our method significantly improves accuracies on the $\texttt{Deletion}$, $\texttt{Insertion}$, and $\texttt{Substitution}$ tasks. To support further research, we open-source our implementation and benchmarks.
Lost in Edits? A $\lambda$-Compass for AIGC Provenance
You, Wenhao, Hooi, Bryan, Wang, Yiwei, Choo, Euijin, Yang, Ming-Hsuan, Yuan, Junsong, Huang, Zi, Cai, Yujun
Recent advancements in diffusion models have driven the growth of text-guided image editing tools, enabling precise and iterative modifications of synthesized content. However, as these tools become increasingly accessible, they also introduce significant risks of misuse, emphasizing the critical need for robust attribution methods to ensure content authenticity and traceability. Despite the creative potential of such tools, they pose significant challenges for attribution, particularly in adversarial settings where edits can be layered to obscure an image's origins. We propose LambdaTracer, a novel latent-space attribution method that robustly identifies and differentiates authentic outputs from manipulated ones without requiring any modifications to generative or editing pipelines. By adaptively calibrating reconstruction losses, LambdaTracer remains effective across diverse iterative editing processes, whether automated through text-guided editing tools such as InstructPix2Pix and ControlNet or performed manually with editing software such as Adobe Photoshop. Extensive experiments reveal that our method consistently outperforms baseline approaches in distinguishing maliciously edited images, providing a practical solution to safeguard ownership, creativity, and credibility in the open, fast-evolving AI ecosystems.
Are LLMs Really Not Knowledgable? Mining the Submerged Knowledge in LLMs' Memory
Tao, Xingjian, Wang, Yiwei, Cai, Yujun, Yang, Zhicheng, Tang, Jing
Large language models (LLMs) have shown promise as potential knowledge bases, yet they often struggle with question-answering tasks and are prone to hallucinations. While previous research attributes these issues to knowledge gaps in the model's parameters, our investigation reveals a different phenomenon: LLMs often retain correct knowledge even when generating incorrect answers. Through analysis of model's internal representations, we find that correct answers frequently appear among high-probability tokens despite not being selected as final outputs. Based on this observation, we introduce Hits@k, a new metric to assess knowledge retention independent of expression accuracy. Our extensive experiments demonstrate that LLMs store significantly more knowledge than their QA performance suggests. Building on these findings, we develop SkipUnsure, a method to improve answer accuracy by leveraging detected but unexpressed knowledge. Experiments on both open-domain and specific-domain datasets show consistent improvements, with accuracy gains of up to 11.8% on DBPedia and 6.3% on IMDB, without requiring model retraining.
DRS: Deep Question Reformulation With Structured Output
Li, Zhecheng, Wang, Yiwei, Hooi, Bryan, Cai, Yujun, Peng, Nanyun, Chang, Kai-Wei
Question answering represents a core capability of large language models (LLMs). However, when individuals encounter unfamiliar knowledge in texts, they often formulate questions that the text itself cannot answer due to insufficient understanding of the underlying information. Recent studies reveal that while LLMs can detect unanswerable questions, they struggle to assist users in reformulating these questions. Even advanced models like GPT-3.5 demonstrate limited effectiveness in this regard. To address this limitation, we propose DRS: Deep Question Reformulation with Structured Output, a novel zero-shot method aimed at enhancing LLMs ability to assist users in reformulating questions to extract relevant information from new documents. DRS combines the strengths of LLMs with a DFS-based algorithm to iteratively explore potential entity combinations and constrain outputs using predefined entities. This structured approach significantly enhances the reformulation capabilities of LLMs. Comprehensive experimental evaluations demonstrate that DRS improves the reformulation accuracy of GPT-3.5 from 23.03% to 70.42%, while also enhancing the performance of open-source models, such as Gemma2-9B, from 26.35% to 56.75%.
emg2pose: A Large and Diverse Benchmark for Surface Electromyographic Hand Pose Estimation
Salter, Sasha, Warren, Richard, Schlager, Collin, Spurr, Adrian, Han, Shangchen, Bhasin, Rohin, Cai, Yujun, Walkington, Peter, Bolarinwa, Anuoluwapo, Wang, Robert, Danielson, Nathan, Merel, Josh, Pnevmatikakis, Eftychios, Marshall, Jesse
Hands are the primary means through which humans interact with the world. Reliable and always-available hand pose inference could yield new and intuitive control schemes for human-computer interactions, particularly in virtual and augmented reality. Computer vision is effective but requires one or multiple cameras and can struggle with occlusions, limited field of view, and poor lighting. Wearable wrist-based surface electromyography (sEMG) presents a promising alternative as an always-available modality sensing muscle activities that drive hand motion. However, sEMG signals are strongly dependent on user anatomy and sensor placement, and existing sEMG models have required hundreds of users and device placements to effectively generalize. To facilitate progress on sEMG pose inference, we introduce the emg2pose benchmark, the largest publicly available dataset of high-quality hand pose labels and wrist sEMG recordings. emg2pose contains 2kHz, 16 channel sEMG and pose labels from a 26-camera motion capture rig for 193 users, 370 hours, and 29 stages with diverse gestures - a scale comparable to vision-based hand pose datasets. We provide competitive baselines and challenging tasks evaluating real-world generalization scenarios: held-out users, sensor placements, and stages. emg2pose provides the machine learning community a platform for exploring complex generalization problems, holding potential to significantly enhance the development of sEMG-based human-computer interactions.
Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization
Li, Zhecheng, Wang, Yiwei, Hooi, Bryan, Cai, Yujun, Cheung, Naifan, Peng, Nanyun, Chang, Kai-wei
Cross-lingual summarization (CLS) aims to generate a summary for the source text in a different target language. Currently, instruction-tuned large language models (LLMs) excel at various English tasks. However, unlike languages such as English, Chinese or Spanish, for those relatively low-resource languages with limited usage or data, recent studies have shown that LLMs' performance on CLS tasks remains unsatisfactory even with few-shot settings. This raises the question: Are LLMs capable of handling cross-lingual summarization tasks for low-resource languages? To resolve this question, we fully explore the potential of large language models on cross-lingual summarization task for low-resource languages through our four-step zero-shot method: Summarization, Improvement, Translation and Refinement (SITR) with correspondingly designed prompts. We test our proposed method with multiple LLMs on two well-known cross-lingual summarization datasets with various low-resource target languages. The results show that: i) GPT-3.5 and GPT-4 significantly and consistently outperform other baselines when using our zero-shot SITR methods. ii) By employing our proposed method, we unlock the potential of LLMs, enabling them to effectively handle cross-lingual summarization tasks for relatively low-resource languages.
Vulnerability of LLMs to Vertically Aligned Text Manipulations
Li, Zhecheng, Wang, Yiwei, Hooi, Bryan, Cai, Yujun, Xiong, Zhen, Peng, Nanyun, Chang, Kai-wei
Text classification involves categorizing a given text, such as determining its sentiment or identifying harmful content. With the advancement of large language models (LLMs), these models have become highly effective at performing text classification tasks. However, they still show vulnerabilities to variations in text formatting. Recent research demonstrates that modifying input formats, such as vertically aligning words for encoder-based models, can substantially lower accuracy in text classification tasks. While easily understood by humans, these inputs can significantly mislead models, posing a potential risk of bypassing detection in real-world scenarios involving harmful or sensitive information. With the expanding application of LLMs, a crucial question arises: Do decoder-based LLMs exhibit similar vulnerabilities to vertically formatted text input? In this paper, we investigate the impact of vertical text input on the performance of various LLMs across multiple text classification datasets and analyze the underlying causes. Our findings are as follows: (i) Vertical text input significantly degrades the accuracy of LLMs in text classification tasks. (ii) Chain of Thought (CoT) reasoning does not help LLMs recognize vertical input or mitigate its vulnerability, but few-shot learning with careful analysis does. (iii) We explore the underlying cause of the vulnerability by analyzing the inherent issues in tokenization and attention matrices.