Cai, Weidong
Controllable Contextualized Image Captioning: Directing the Visual Narrative through User-Defined Highlights
Mao, Shunqi, Zhang, Chaoyi, Su, Hang, Song, Hwanjun, Shalyminov, Igor, Cai, Weidong
Contextualized Image Captioning (CIC) evolves traditional image captioning into a more complex domain, necessitating the ability for multimodal reasoning. It aims to generate image captions given specific contextual information. This paper further introduces a novel domain of Controllable Contextualized Image Captioning (Ctrl-CIC). Unlike CIC, which solely relies on broad context, Ctrl-CIC accentuates a user-defined highlight, compelling the model to tailor captions that resonate with the highlighted aspects of the context. We present two approaches, Prompting-based Controller (P-Ctrl) and Recalibration-based Controller (R-Ctrl), to generate focused captions. P-Ctrl conditions the model generation on highlight by prepending captions with highlight-driven prefixes, whereas R-Ctrl tunes the model to selectively recalibrate the encoder embeddings for highlighted tokens. Additionally, we design a GPT-4V empowered evaluator to assess the quality of the controlled captions alongside standard assessment methods. Extensive experimental results demonstrate the efficient and effective controllability of our method, charting a new direction in achieving user-adaptive image captioning. Code is available at https://github.com/ShunqiM/Ctrl-CIC .
Dance Any Beat: Blending Beats with Visuals in Dance Video Generation
Wang, Xuanchen, Wang, Heng, Liu, Dongnan, Cai, Weidong
Automated choreography advances by generating dance from music. Current methods create skeleton keypoint sequences, not full dance videos, and cannot make specific individuals dance, limiting their real-world use. These methods also need precise keypoint annotations, making data collection difficult and restricting the use of self-made video datasets. To overcome these challenges, we introduce a novel task: generating dance videos directly from images of individuals guided by music. This task enables the dance generation of specific individuals without requiring keypoint annotations, making it more versatile and applicable to various situations. Our solution, the Dance Any Beat Diffusion model (DabFusion), utilizes a reference image and a music piece to generate dance videos featuring various dance types and choreographies. The music is analyzed by our specially designed music encoder, which identifies essential features including dance style, movement, and rhythm. DabFusion excels in generating dance videos not only for individuals in the training dataset but also for any previously unseen person. This versatility stems from its approach of generating latent optical flow, which contains all necessary motion information to animate any person in the image. We evaluate DabFusion's performance using the AIST++ dataset, focusing on video quality, audio-video synchronization, and motion-music alignment. We propose a 2D Motion-Music Alignment Score (2D-MM Align), which builds on the Beat Alignment Score to more effectively evaluate motion-music alignment for this new task. Experiments show that our DabFusion establishes a solid baseline for this innovative task. Video results can be found on our project page: https://DabFusion.github.io.
Revisiting Adaptive Cellular Recognition Under Domain Shifts: A Contextual Correspondence View
Fan, Jianan, Liu, Dongnan, Li, Canran, Chang, Hang, Huang, Heng, Braet, Filip, Chen, Mei, Cai, Weidong
Cellular nuclei recognition serves as a fundamental and essential step in the workflow of digital pathology. However, with disparate source organs and staining procedures among histology image clusters, the scanned tiles inherently conform to a non-uniform data distribution, which induces deteriorated promises for general cross-cohort usages. Despite the latest efforts leveraging domain adaptation to mitigate distributional discrepancy, those methods are subjected to modeling the morphological characteristics of each cell individually, disregarding the hierarchical latent structure and intrinsic contextual correspondences across the tumor micro-environment. In this work, we identify the importance of implicit correspondences across biological contexts for exploiting domain-invariant pathological composition and thereby propose to exploit the dependence over various biological structures for domain adaptive cellular recognition. We discover those high-level correspondences via unsupervised contextual modeling and use them as bridges to facilitate adaptation over diverse organs and stains. In addition, to further exploit the rich spatial contexts embedded amongst nuclear communities, we propose self-adaptive dynamic distillation to secure instance-aware trade-offs across different model constituents. The proposed method is extensively evaluated on a broad spectrum of cross-domain settings under miscellaneous data distribution shifts and outperforms the state-of-the-art methods by a substantial margin.
Boosting 3D Neuron Segmentation with 2D Vision Transformer Pre-trained on Natural Images
Cheng, Yik San, Zhao, Runkai, Wang, Heng, Peng, Hanchuan, Cai, Weidong
It plays a critical role in analyzing the structure-function relationship of neurons in the nervous system. However, due to the scarcity of neuron datasets and high-quality SWC annotations, it is still challenging to develop robust segmentation methods for single neuron reconstruction. To address this limitation, we aim to distill the consensus knowledge from massive natural image data to aid the segmentation model in learning the complex neuron structures. Specifically, in this work, we propose a novel training paradigm that leverages a 2D Vision Transformer model pre-trained on large-scale natural images to initialize our Transformer-based 3D neuron segmentation model with a tailored 2D-to-3D weight transferring strategy. Our method builds a knowledge sharing connection between the abundant natural and the scarce neuron image domains to improve the 3D neuron segmentation ability in a data-efficiency manner. Evaluated on a popular benchmark, BigNeuron, our method enhances neuron segmentation performance by 8.71% over the model trained from scratch with the same amount of training samples.
LaPA: Latent Prompt Assist Model For Medical Visual Question Answering
Gu, Tiancheng, Yang, Kaicheng, Liu, Dongnan, Cai, Weidong
Medical visual question answering (Med-VQA) aims to automate the prediction of correct answers for medical images and questions, thereby assisting physicians in reducing repetitive tasks and alleviating their workload. Existing approaches primarily focus on pre-training models using additional and comprehensive datasets, followed by fine-tuning to enhance performance in downstream tasks. However, there is also significant value in exploring existing models to extract clinically relevant information. In this paper, we propose the Latent Prompt Assist model (LaPA) for medical visual question answering. Firstly, we design a latent prompt generation module to generate the latent prompt with the constraint of the target answer. Subsequently, we propose a multi-modal fusion block with latent prompt fusion module that utilizes the latent prompt to extract clinical-relevant information from uni-modal and multi-modal features. Additionally, we introduce a prior knowledge fusion module to integrate the relationship between diseases and organs with the clinical-relevant information. Finally, we combine the final integrated information with image-language cross-modal information to predict the final answers. Experimental results on three publicly available Med-VQA datasets demonstrate that LaPA outperforms the state-of-the-art model ARL, achieving improvements of 1.83%, 0.63%, and 1.80% on VQA-RAD, SLAKE, and VQA-2019, respectively. The code is publicly available at https://github.com/GaryGuTC/LaPA_model.
Cross-domain Fiber Cluster Shape Analysis for Language Performance Cognitive Score Prediction
Lo, Yui, Chen, Yuqian, Liu, Dongnan, Liu, Wan, Zekelman, Leo, Zhang, Fan, Rathi, Yogesh, Makris, Nikos, Golby, Alexandra J., Cai, Weidong, O'Donnell, Lauren J.
Shape plays an important role in computer graphics, offering informative features to convey an object's morphology and functionality. Shape analysis in brain imaging can help interpret structural and functionality correlations of the human brain. In this work, we investigate the shape of the brain's 3D white matter connections and its potential predictive relationship to human cognitive function. We reconstruct brain connections as sequences of 3D points using diffusion magnetic resonance imaging (dMRI) tractography. To describe each connection, we extract 12 shape descriptors in addition to traditional dMRI connectivity and tissue microstructure features. We introduce a novel framework, Shape--fused Fiber Cluster Transformer (SFFormer), that leverages a multi-head cross-attention feature fusion module to predict subject-specific language performance based on dMRI tractography. We assess the performance of the method on a large dataset including 1065 healthy young adults. The results demonstrate that both the transformer-based SFFormer model and its inter/intra feature fusion with shape, microstructure, and connectivity are informative, and together, they improve the prediction of subject-specific language performance scores. Overall, our results indicate that the shape of the brain's connections is predictive of human language function.
Seeing Unseen: Discover Novel Biomedical Concepts via Geometry-Constrained Probabilistic Modeling
Fan, Jianan, Liu, Dongnan, Chang, Hang, Huang, Heng, Chen, Mei, Cai, Weidong
Machine learning holds tremendous promise for transforming the fundamental practice of scientific discovery by virtue of its data-driven nature. With the ever-increasing stream of research data collection, it would be appealing to autonomously explore patterns and insights from observational data for discovering novel classes of phenotypes and concepts. However, in the biomedical domain, there are several challenges inherently presented in the cumulated data which hamper the progress of novel class discovery. The non-i.i.d. data distribution accompanied by the severe imbalance among different groups of classes essentially leads to ambiguous and biased semantic representations. In this work, we present a geometry-constrained probabilistic modeling treatment to resolve the identified issues. First, we propose to parameterize the approximated posterior of instance embedding as a marginal von MisesFisher distribution to account for the interference of distributional latent bias. Then, we incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space, which in turn minimizes the uncontrollable risk for unknown class learning and structuring. Furthermore, a spectral graph-theoretic method is devised to estimate the number of potential novel classes. It inherits two intriguing merits compared to existent approaches, namely high computational efficiency and flexibility for taxonomy-adaptive estimation. Extensive experiments across various biomedical scenarios substantiate the effectiveness and general applicability of our method.
A Deep Network for Explainable Prediction of Non-Imaging Phenotypes using Anatomical Multi-View Data
Wei, Yuxiang, Chen, Yuqian, Xue, Tengfei, Zekelman, Leo, Makris, Nikos, Rathi, Yogesh, Cai, Weidong, Zhang, Fan, Donnell, Lauren J. O'
Large datasets often contain multiple distinct feature sets, or views, that offer complementary information that can be exploited by multi-view learning methods to improve results. We investigate anatomical multi-view data, where each brain anatomical structure is described with multiple feature sets. In particular, we focus on sets of white matter microstructure and connectivity features from diffusion MRI, as well as sets of gray matter area and thickness features from structural MRI. We investigate machine learning methodology that applies multi-view approaches to improve the prediction of non-imaging phenotypes, including demographics (age), motor (strength), and cognition (picture vocabulary). We present an explainable multi-view network (EMV-Net) that can use different anatomical views to improve prediction performance. In this network, each individual anatomical view is processed by a view-specific feature extractor and the extracted information from each view is fused using a learnable weight. This is followed by a wavelet transform-based module to obtain complementary information across views which is then applied to calibrate the view-specific information. Additionally, the calibrator produces an attention-based calibration score to indicate anatomical structures' importance for interpretation.
V2A-Mapper: A Lightweight Solution for Vision-to-Audio Generation by Connecting Foundation Models
Wang, Heng, Ma, Jianbo, Pascual, Santiago, Cartwright, Richard, Cai, Weidong
Building artificial intelligence (AI) systems on top of a set of foundation models (FMs) is becoming a new paradigm in AI research. Their representative and generative abilities learnt from vast amounts of data can be easily adapted and transferred to a wide range of downstream tasks without extra training from scratch. However, leveraging FMs in cross-modal generation remains under-researched when audio modality is involved. On the other hand, automatically generating semantically-relevant sound from visual input is an important problem in cross-modal generation studies. To solve this vision-to-audio (V2A) generation problem, existing methods tend to design and build complex systems from scratch using modestly sized datasets. In this paper, we propose a lightweight solution to this problem by leveraging foundation models, specifically CLIP, CLAP, and AudioLDM. We first investigate the domain gap between the latent space of the visual CLIP and the auditory CLAP models. Then we propose a simple yet effective mapper mechanism (V2A-Mapper) to bridge the domain gap by translating the visual input between CLIP and CLAP spaces. Conditioned on the translated CLAP embedding, pretrained audio generative FM AudioLDM is adopted to produce high-fidelity and visually-aligned sound. Compared to previous approaches, our method only requires a quick training of the V2A-Mapper. We further analyze and conduct extensive experiments on the choice of the V2A-Mapper and show that a generative mapper is better at fidelity and variability (FD) while a regression mapper is slightly better at relevance (CS). Both objective and subjective evaluation on two V2A datasets demonstrate the superiority of our proposed method compared to current state-of-the-art approaches - trained with 86% fewer parameters but achieving 53% and 19% improvement in FD and CS, respectively.
Complex Organ Mask Guided Radiology Report Generation
Gu, Tiancheng, Liu, Dongnan, Li, Zhiyuan, Cai, Weidong
The goal of automatic report generation is to generate a clinically accurate and coherent phrase from a single given X-ray image, which could alleviate the workload of traditional radiology reporting. However, in a real-world scenario, radiologists frequently face the challenge of producing extensive reports derived from numerous medical images, thereby medical report generation from multi-image perspective is needed. In this paper, we propose the Complex Organ Mask Guided (termed as COMG) report generation model, which incorporates masks from multiple organs (e.g., bones, lungs, heart, and mediastinum), to provide more detailed information and guide the model's attention to these crucial body regions. Specifically, we leverage prior knowledge of the disease corresponding to each organ in the fusion process to enhance the disease identification phase during the report generation process. Additionally, cosine similarity loss is introduced as target function to ensure the convergence of cross-modal consistency and facilitate model optimization.Experimental results on two public datasets show that COMG achieves a 11.4% and 9.7% improvement in terms of BLEU@4 scores over the SOTA model KiUT on IU-Xray and MIMIC, respectively. The code is publicly available at https://github.com/GaryGuTC/COMG_model.