Cai, Weidong
MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention
Wang, Tianyi, Fan, Jianan, Zhang, Dingxin, Liu, Dongnan, Xia, Yong, Huang, Heng, Cai, Weidong
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease. Multi-modal self-supervised learning has demonstrated remarkable potential in learning pathological representations by integrating diverse data sources. Conventional multi-modal integration methods primarily emphasize modality alignment, while paying insufficient attention to retaining the modality-specific structures. However, unlike conventional scenarios where multi-modal inputs share highly overlapping features, histopathology and transcriptomics exhibit pronounced heterogeneity, offering orthogonal yet complementary insights. Histopathology provides morphological and spatial context, elucidating tissue architecture and cellular topology, whereas transcriptomics delineates molecular signatures through gene expression patterns. This inherent disparity introduces a major challenge in aligning them while maintaining modality-specific fidelity. To address these challenges, we present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention. MIRROR employs dedicated encoders to extract comprehensive features for each modality, which is further complemented by a modality alignment module to achieve seamless integration between phenotype patterns and molecular profiles. Furthermore, a modality retention module safeguards unique attributes from each modality, while a style clustering module mitigates redundancy and enhances disease-relevant information by modeling and aligning consistent pathological signatures within a clustering space. Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance, demonstrating its effectiveness in constructing comprehensive oncological feature representations and benefiting the cancer diagnosis.
Through the Magnifying Glass: Adaptive Perception Magnification for Hallucination-Free VLM Decoding
Mao, Shunqi, Zhang, Chaoyi, Cai, Weidong
Existing vision-language models (VLMs) often suffer from visual hallucination, where the generated responses contain inaccuracies that are not grounded in the visual input. Efforts to address this issue without model finetuning primarily mitigate hallucination by reducing biases contrastively or amplifying the weights of visual embedding during decoding. However, these approaches improve visual perception at the cost of impairing the language reasoning capability. In this work, we propose the Perception Magnifier (PM), a novel visual decoding method that iteratively isolates relevant visual tokens based on attention and magnifies the corresponding regions, spurring the model to concentrate on fine-grained visual details during decoding. Specifically, by magnifying critical regions while preserving the structural and contextual information at each decoding step, PM allows the VLM to enhance its scrutiny of the visual input, hence producing more accurate and faithful responses. Extensive experimental results demonstrate that PM not only achieves superior hallucination mitigation but also enhances language generation while preserving strong reasoning capabilities. Code is available at https://github.com/ShunqiM/PM .
CA-W3D: Leveraging Context-Aware Knowledge for Weakly Supervised Monocular 3D Detection
Liu, Chupeng, Zhao, Runkai, Cai, Weidong
Weakly supervised monocular 3D detection, while less annotation-intensive, often struggles to capture the global context required for reliable 3D reasoning. Conventional label-efficient methods focus on object-centric features, neglecting contextual semantic relationships that are critical in complex scenes. In this work, we propose a Context-Aware Weak Supervision for Monocular 3D object detection, namely CA-W3D, to address this limitation in a two-stage training paradigm. Specifically, we first introduce a pre-training stage employing Region-wise Object Contrastive Matching (ROCM), which aligns regional object embeddings derived from a trainable monocular 3D encoder and a frozen open-vocabulary 2D visual grounding model. This alignment encourages the monocular encoder to discriminate scene-specific attributes and acquire richer contextual knowledge. In the second stage, we incorporate a pseudo-label training process with a Dual-to-One Distillation (D2OD) mechanism, which effectively transfers contextual priors into the monocular encoder while preserving spatial fidelity and maintaining computational efficiency during inference. Extensive experiments conducted on the public KITTI benchmark demonstrate the effectiveness of our approach, surpassing the SoTA method over all metrics, highlighting the importance of contextual-aware knowledge in weakly-supervised monocular 3D detection.
Efficient 4D fMRI ASD Classification using Spatial-Temporal-Omics-based Learning Framework
Weng, Ziqiao, Cai, Weidong, Zhou, Bo
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder impacting social and behavioral development. Resting-state fMRI, a non-invasive tool for capturing brain connectivity patterns, aids in early ASD diagnosis and differentiation from typical controls (TC). However, previous methods, which rely on either mean time series or full 4D data, are limited by a lack of spatial information or by high computational costs. This underscores the need for an efficient solution that preserves both spatial and temporal information. In this paper, we propose a novel, simple, and efficient spatial-temporal-omics learning framework designed to efficiently extract spatio-temporal features from fMRI for ASD classification. Our approach addresses these limitations by utilizing 3D time-domain derivatives as the spatial-temporal inter-voxel omics, which preserve full spatial resolution while capturing diverse statistical characteristics of the time series at each voxel. Meanwhile, functional connectivity features serve as the spatial-temporal inter-regional omics, capturing correlations across brain regions. Extensive experiments and ablation studies on the ABIDE dataset demonstrate that our framework significantly outperforms previous methods while maintaining computational efficiency. We believe our research offers valuable insights that will inform and advance future ASD studies, particularly in the realm of spatial-temporal-omics-based learning.
NVS-SQA: Exploring Self-Supervised Quality Representation Learning for Neurally Synthesized Scenes without References
Qu, Qiang, Shen, Yiran, Chen, Xiaoming, Chung, Yuk Ying, Cai, Weidong, Liu, Tongliang
Neural View Synthesis (NVS), such as NeRF and 3D Gaussian Splatting, effectively creates photorealistic scenes from sparse viewpoints, typically evaluated by quality assessment methods like PSNR, SSIM, and LPIPS. However, these full-reference methods, which compare synthesized views to reference views, may not fully capture the perceptual quality of neurally synthesized scenes (NSS), particularly due to the limited availability of dense reference views. Furthermore, the challenges in acquiring human perceptual labels hinder the creation of extensive labeled datasets, risking model overfitting and reduced generalizability. To address these issues, we propose NVS-SQA, a NSS quality assessment method to learn no-reference quality representations through self-supervision without reliance on human labels. Traditional self-supervised learning predominantly relies on the "same instance, similar representation" assumption and extensive datasets. However, given that these conditions do not apply in NSS quality assessment, we employ heuristic cues and quality scores as learning objectives, along with a specialized contrastive pair preparation process to improve the effectiveness and efficiency of learning. The results show that NVS-SQA outperforms 17 no-reference methods by a large margin (i.e., on average 109.5% in SRCC, 98.6% in PLCC, and 91.5% in KRCC over the second best) and even exceeds 16 full-reference methods across all evaluation metrics (i.e., 22.9% in SRCC, 19.1% in PLCC, and 18.6% in KRCC over the second best).
TractShapeNet: Efficient Multi-Shape Learning with 3D Tractography Point Clouds
Lo, Yui, Chen, Yuqian, Liu, Dongnan, Legarreta, Jon Haitz, Zekelman, Leo, Zhang, Fan, Rushmore, Jarrett, Rathi, Yogesh, Makris, Nikos, Golby, Alexandra J., Cai, Weidong, O'Donnell, Lauren J.
Brain imaging studies have demonstrated that diffusion MRI tractography geometric shape descriptors can inform the study of the brain's white matter pathways and their relationship to brain function. In this work, we investigate the possibility of utilizing a deep learning model to compute shape measures of the brain's white matter connections. We introduce a novel framework, TractShapeNet, that leverages a point cloud representation of tractography to compute five shape measures: length, span, volume, total surface area, and irregularity. We assess the performance of the method on a large dataset including 1,065 healthy young adults. Experiments for shape measure computation demonstrate that our proposed TractShapeNet outperforms other point-cloud-based neural network models in both the Pearson correlation coefficient and normalized error metrics. We compare the inference runtime results with the conventional shape computation tool DSI-Studio. Our results demonstrate that a deep learning approach enables faster and more efficient shape-measure computation. We also conduct experiments on two downstream language cognition prediction tasks, showing that shape measures from TractShapeNet perform similarly to those computed by DSI-Studio.
DeepIcon: A Hierarchical Network for Layer-wise Icon Vectorization
Bing, Qi, Zhang, Chaoyi, Cai, Weidong
In contrast to the well-established technique of rasterization, vectorization of images poses a significant challenge in the field of computer graphics. Recent learning-based methods for converting raster images to vector formats frequently suffer from incomplete shapes, redundant path prediction, and a lack of accuracy in preserving the semantics of the original content. These shortcomings severely hinder the utility of these methods for further editing and manipulation of images. To address these challenges, we present DeepIcon, a novel hierarchical image vectorization network specifically tailored for generating variable-length icon vector graphics based on the raster image input. Our experimental results indicate that DeepIcon can efficiently produce Scalable Vector Graphics (SVGs) directly from raster images, bypassing the need for a differentiable rasterizer while also demonstrating a profound understanding of the image contents.
Learning to Synthesize Graphics Programs for Geometric Artworks
Bing, Qi, Zhang, Chaoyi, Cai, Weidong
Creating and understanding art has long been a hallmark of human ability. When presented with finished digital artwork, professional graphic artists can intuitively deconstruct and replicate it using various drawing tools, such as the line tool, paint bucket, and layer features, including opacity and blending modes. While most recent research in this field has focused on art generation, proposing a range of methods, these often rely on the concept of artwork being represented as a final image. To bridge the gap between pixel-level results and the actual drawing process, we present an approach that treats a set of drawing tools as executable programs. This method predicts a sequence of steps to achieve the final image, allowing for understandable and resolution-independent reproductions under the usage of a set of drawing commands. Our experiments demonstrate that our program synthesizer, Art2Prog, can comprehensively understand complex input images and reproduce them using high-quality executable programs. The experimental results evidence the potential of machines to grasp higher-level information from images and generate compact program-level descriptions.
The shape of the brain's connections is predictive of cognitive performance: an explainable machine learning study
Lo, Yui, Chen, Yuqian, Liu, Dongnan, Liu, Wan, Zekelman, Leo, Rushmore, Jarrett, Zhang, Fan, Rathi, Yogesh, Makris, Nikos, Golby, Alexandra J., Cai, Weidong, O'Donnell, Lauren J.
The shape of the brain's white matter connections is relatively unexplored in diffusion MRI tractography analysis. While it is known that tract shape varies in populations and across the human lifespan, it is unknown if the variability in dMRI tractography-derived shape may relate to the brain's functional variability across individuals. This work explores the potential of leveraging tractography fiber cluster shape measures to predict subject-specific cognitive performance. We implement machine learning models to predict individual cognitive performance scores. We study a large-scale database from the HCP-YA study. We apply an atlas-based fiber cluster parcellation to the dMRI tractography of each individual. We compute 15 shape, microstructure, and connectivity features for each fiber cluster. Using these features as input, we train a total of 210 models to predict 7 different NIH Toolbox cognitive performance assessments. We apply an explainable AI technique, SHAP, to assess the importance of each fiber cluster for prediction. Our results demonstrate that shape measures are predictive of individual cognitive performance. The studied shape measures, such as irregularity, diameter, total surface area, volume, and branch volume, are as effective for prediction as microstructure and connectivity measures. The overall best-performing feature is a shape feature, irregularity, which describes how different a cluster's shape is from an idealized cylinder. Further interpretation using SHAP values suggest that fiber clusters with features highly predictive of cognitive ability are widespread throughout the brain, including fiber clusters from the superficial association, deep association, cerebellar, striatal, and projection pathways. This study demonstrates the strong potential of shape descriptors to enhance the study of the brain's white matter and its relationship to cognitive function.
Enhancing Advanced Visual Reasoning Ability of Large Language Models
Li, Zhiyuan, Liu, Dongnan, Zhang, Chaoyi, Wang, Heng, Xue, Tengfei, Cai, Weidong
Recent advancements in Vision-Language (VL) research have sparked new benchmarks for complex visual reasoning, challenging models' advanced reasoning ability. Traditional Vision-Language Models (VLMs) perform well in visual perception tasks while struggling with complex reasoning scenarios. Conversely, Large Language Models (LLMs) demonstrate robust text reasoning capabilities; however, they lack visual acuity. To bridge this gap, we propose Complex Visual Reasoning Large Language Models (CVR-LLM), capitalizing on VLMs' visual perception proficiency and LLMs' extensive reasoning capability. Unlike recent multimodal large language models (MLLMs) that require a projection layer, our approach transforms images into detailed, context-aware descriptions using an iterative self-refinement loop and leverages LLMs' text knowledge for accurate predictions without extra training. We also introduce a novel multi-modal in-context learning (ICL) methodology to enhance LLMs' contextual understanding and reasoning. Additionally, we introduce Chain-of-Comparison (CoC), a step-by-step comparison technique enabling contrasting various aspects of predictions. Our CVR-LLM presents the first comprehensive study across a wide array of complex visual reasoning tasks and achieves SOTA performance among all.