Cagan, Jonathan
Curve-based Neural Style Transfer
Chen, Yu-hsuan, Kara, Levent Burak, Cagan, Jonathan
This research presents a new parametric style transfer framework specifically designed for curve-based design sketches. In this research, traditional challenges faced by neural style transfer methods in handling binary sketch transformations are effectively addressed through the utilization of parametric shape-editing rules, efficient curve-to-pixel conversion techniques, and the fine-tuning of VGG19 on ImageNet-Sketch, enhancing its role as a feature pyramid network for precise style extraction. By harmonizing intuitive curve-based imagery with rule-based editing, this study holds the potential to significantly enhance design articulation and elevate the practice of style transfer within the realm of product design. Figure 1: Workflow of the proposed curve-based style transfer method.
Automating Style Analysis and Visualization With Explainable AI -- Case Studies on Brand Recognition
Chen, Yu-hsuan, Kara, Levent Burak, Cagan, Jonathan
Incorporating style-related objectives into shape design has been centrally important to maximize product appeal. However, stylistic features such as aesthetics and semantic attributes are hard to codify even for experts. As such, algorithmic style capture and reuse have not fully benefited from automated data-driven methodologies due to the challenging nature of design describability. This paper proposes an AI-driven method to fully automate the discovery of brand-related features. Our approach introduces BIGNet, a two-tier Brand Identification Graph Neural Network (GNN) to classify and analyze scalar vector graphics (SVG). First, to tackle the scarcity of vectorized product images, this research proposes two data acquisition workflows: parametric modeling from small curve-based datasets, and vectorization from large pixel-based datasets. Secondly, this study constructs a novel hierarchical GNN architecture to learn from both SVG's curve-level and chunk-level parameters. In the first case study, BIGNet not only classifies phone brands but also captures brand-related features across multiple scales, such as the location of the lens, the height-width ratio, and the screen-frame gap, as confirmed by AI evaluation. In the second study, this paper showcases the generalizability of BIGNet learning from a vectorized car image dataset and validates the consistency and robustness of its predictions given four scenarios. The results match the difference commonly observed in luxury vs. economy brands in the automobile market. Finally, this paper also visualizes the activation maps generated from a convolutional neural network and shows BIGNet's advantage of being a more human-friendly, explainable, and explicit style-capturing agent. Code and dataset can be found on Github: 1. Phone case study: github.com/parksandrecfan/bignet-phone 2. Car case study: github.com/parksandrecfan/bignet-car
Learning to design without prior data: Discovering generalizable design strategies using deep learning and tree search
Raina, Ayush, Cagan, Jonathan, McComb, Christopher
ABSTRACT Building an AI agent that can design on its own has been a goal since the 1980s. Recently, deep learning has shown the ability to learn from large-scale data, enabling significant advances in data-driven design. However, learning over prior data limits us only to solve problems that have been solved before and biases data-driven learning towards existing solutions. The ultimate goal for a design agent is the ability to learn generalizable design behavior in a problem space without having seen it before. We introduce a self-learning agent framework in this work that achieves this goal. This framework integrates a deep policy network with a novel tree search algorithm, where the tree search explores the problem space, and the deep policy network leverages self-generated experience to guide the search further. This framework first demonstrates an ability to discover high-performing generative strategies without any prior data, and second, it illustrates a zero-shot generalization of generative strategies across various unseen boundary conditions. This work evaluates the effectiveness and versatility of the framework by solving multiple versions of two engineering design problems without retraining. Overall, this paper presents a methodology to self-learn high-performing and generalizable problem-solving behavior in an arbitrary problem space, circumventing the needs for expert data, existing solutions, and problem-specific learning. Published in ASME Journal of Mechanical Design. Published online November 11 2022. INTRODUCTION: Solving design problems is one of the most ubiquitous processes in engineering and arguably the most challenging [1,2]. The design automation research paradigm aims to augment the continually evolving design solving process by enabling machines to engage in design. Despite decades of research in the area, modern-day automated design synthesis is still heavily guided by handcrafted rules and prior expert data, making it susceptible to non-generalizability and errors resulting from human bias [3,4]. Developing a design agent that can learn from scratch is still a long-standing challenge. This paper addresses this challenge by introducing a generalizable design agent framework that integrates newly developed tree search and deep learning methods. The tree search enables exploration and information gathering, while the deep learning representation helps the agent leverage self-generated experience. Together, these methods provide a symbiotic integration of decision-making methods to effectively explore and learn in unknown design problem spaces. Learning problem-solving strategies from scratch has been achieved in multiple domains [5-8]. Some of these methods use a dual-process decision-making framework which is often compared to the slow and fast thinking ideology [9]s.
Goal-Directed Design Agents: Integrating Visual Imitation with One-Step Lookahead Optimization for Generative Design
Raina, Ayush, Puentes, Lucas, Cagan, Jonathan, McComb, Christopher
Engineering design problems often involve large state and action spaces along with highly sparse rewards. Since an exhaustive search of those spaces is not feasible, humans utilize relevant domain knowledge to condense the search space. Previously, deep learning agents (DLAgents) were introduced to use visual imitation learning to model design domain knowledge. This note builds on DLAgents and integrates them with one-step lookahead search to develop goal-directed agents capable of enhancing learned strategies for sequentially generating designs. Goal-directed DLAgents can employ human strategies learned from data along with optimizing an objective function. The visual imitation network from DLAgents is composed of a convolutional encoder-decoder network, acting as a rough planning step that is agnostic to feedback. Meanwhile, the lookahead search identifies the fine-tuned design action guided by an objective. These design agents are trained on an unconstrained truss design problem that is modeled as a sequential, action-based configuration design problem. The agents are then evaluated on two versions of the problem: the original version used for training and an unseen constrained version with an obstructed construction space. The goal-directed agents outperform the human designers used to train the network as well as the previous objective-agnostic versions of the agent in both scenarios. This illustrates a design agent framework that can efficiently use feedback to not only enhance learned design strategies but also adapt to unseen design problems.
Design Strategy Network: A deep hierarchical framework to represent generative design strategies in complex action spaces
Raina, Ayush, Cagan, Jonathan, McComb, Christopher
Generative design problems often encompass complex action spaces that may be divergent over time, contain state-dependent constraints, or involve hybrid (discrete and continuous) domains. To address those challenges, this work introduces Design Strategy Network (DSN), a data-driven deep hierarchical framework that can learn strategies over these arbitrary complex action spaces. The hierarchical architecture decomposes every action decision into first predicting a preferred spatial region in the design space and then outputting a probability distribution over a set of possible actions from that region. This framework comprises a convolutional encoder to work with image-based design state representations, a multi-layer perceptron to predict a spatial region, and a weight-sharing network to generate a probability distribution over unordered set-based inputs of feasible actions. Applied to a truss design study, the framework learns to predict the actions of human designers in the study, capturing their truss generation strategies in the process. Results show that DSNs significantly outperform non-hierarchical methods of policy representation, demonstrating their superiority in complex action space problems.
Learning to design from humans: Imitating human designers through deep learning
Raina, Ayush, McComb, Christopher, Cagan, Jonathan
Humans as designers have quite versatile problem-solving strategies. Computer agents on the other hand can access large scale computational resources to solve certain design problems. Hence, if agents can learn from human behavior, a synergetic human-agent problem solving team can be created. This paper presents an approach to extract human design strategies and implicit rules, purely from historical human data, and use that for design generation. A two-step framework that learns to imitate human design strategies from observation is proposed and implemented. This framework makes use of deep learning constructs to learn to generate designs without any explicit information about objective and performance metrics. The framework is designed to interact with the problem through a visual interface as humans did when solving the problem. It is trained to imitate a set of human designers by observing their design state sequences without inducing problem-specific modelling bias or extra information about the problem. Furthermore, an end-to-end agent is developed that uses this deep learning framework as its core in conjunction with image processing to map pixel-to-design moves as a mechanism to generate designs. Finally, the designs generated by a computational team of these agents are then compared to actual human data for teams solving a truss design problem. Results demonstrates that these agents are able to create feasible and efficient truss designs without guidance, showing that this methodology allows agents to learn effective design strategies.