Goto

Collaborating Authors

 Byrne, Bill


Improved Fine-Tuning of Large Multimodal Models for Hateful Meme Detection

arXiv.org Artificial Intelligence

Hateful memes have become a significant concern on the Internet, necessitating robust automated detection systems. While large multimodal models have shown strong generalization across various tasks, they exhibit poor generalization to hateful meme detection due to the dynamic nature of memes tied to emerging social trends and breaking news. Recent work further highlights the limitations of conventional supervised fine-tuning for large multimodal models in this context. To address these challenges, we propose Large Multimodal Model Retrieval-Guided Contrastive Learning (LMM-RGCL), a novel two-stage fine-tuning framework designed to improve both in-domain accuracy and cross-domain generalization. Experimental results on six widely used meme classification datasets demonstrate that LMM-RGCL achieves state-of-the-art performance, outperforming agent-based systems such as VPD-PALI-X-55B. Furthermore, our method effectively generalizes to out-of-domain memes under low-resource settings, surpassing models like GPT-4o.


Retrieving Contextual Information for Long-Form Question Answering using Weak Supervision

arXiv.org Artificial Intelligence

Long-form question answering (LFQA) aims at generating in-depth answers to end-user questions, providing relevant information beyond the direct answer. However, existing retrievers are typically optimized towards information that directly targets the question, missing out on such contextual information. Furthermore, there is a lack of training data for relevant context. To this end, we propose and compare different weak supervision techniques to optimize retrieval for contextual information. Experiments demonstrate improvements on the end-to-end QA performance on ASQA, a dataset for long-form question answering. Importantly, as more contextual information is retrieved, we improve the relevant page recall for LFQA by 14.7% and the groundedness of generated long-form answers by 12.5%. Finally, we show that long-form answers often anticipate likely follow-up questions, via experiments on a conversational QA dataset.


On Extending Direct Preference Optimization to Accommodate Ties

arXiv.org Artificial Intelligence

We derive and investigate two DPO variants that explicitly model the possibility of declaring a tie in pair-wise comparisons. We replace the Bradley-Terry model in DPO with two well-known modeling extensions, by Rao and Kupper and by Davidson, that assign probability to ties as alternatives to clear preferences. Our experiments in neural machine translation and summarization show that explicitly labeled ties can be added to the datasets for these DPO variants without the degradation in task performance that is observed when the same tied pairs are presented to DPO. We find empirically that the inclusion of ties leads to stronger regularization with respect to the reference policy as measured by KL divergence, and we see this even for DPO in its original form. These findings motivate and enable the inclusion of tied pairs in preference optimization as opposed to simply discarding them.


Improving Hateful Meme Detection through Retrieval-Guided Contrastive Learning

arXiv.org Artificial Intelligence

Hateful memes have emerged as a significant concern on the Internet. Detecting hateful memes requires the system to jointly understand the visual and textual modalities. Our investigation reveals that the embedding space of existing CLIP-based systems lacks sensitivity to subtle differences in memes that are vital for correct hatefulness classification. We propose constructing a hatefulness-aware embedding space through retrieval-guided contrastive training. Our approach achieves state-of-the-art performance on the HatefulMemes dataset with an AUROC of 87.0, outperforming much larger fine-tuned large multimodal models. We demonstrate a retrieval-based hateful memes detection system, which is capable of identifying hatefulness based on data unseen in training. This allows developers to update the hateful memes detection system by simply adding new examples without retraining, a desirable feature for real services in the constantly evolving landscape of hateful memes on the Internet.


The Fine-Tuning Paradox: Boosting Translation Quality Without Sacrificing LLM Abilities

arXiv.org Artificial Intelligence

Fine-tuning large language models (LLMs) for machine translation has shown improvements in overall translation quality. However, it is unclear what is the impact of fine-tuning on desirable LLM behaviors that are not present in neural machine translation models, such as steerability, inherent document-level translation abilities, and the ability to produce less literal translations. We perform an extensive translation evaluation on the LLaMA and Falcon family of models with model size ranging from 7 billion up to 65 billion parameters. Our results show that while fine-tuning improves the general translation quality of LLMs, several abilities degrade. In particular, we observe a decline in the ability to perform formality steering, to produce technical translations through few-shot examples, and to perform document-level translation. On the other hand, we observe that the model produces less literal translations after fine-tuning on parallel data. We show that by including monolingual data as part of the fine-tuning data we can maintain the abilities while simultaneously enhancing overall translation quality. Our findings emphasize the need for fine-tuning strategies that preserve the benefits of LLMs for machine translation.


A Preference-driven Paradigm for Enhanced Translation with Large Language Models

arXiv.org Artificial Intelligence

Recent research has shown that large language models (LLMs) can achieve remarkable translation performance through supervised fine-tuning (SFT) using only a small amount of parallel data. However, SFT simply instructs the model to imitate the reference translations at the token level, making it vulnerable to the noise present in the references. Hence, the assistance from SFT often reaches a plateau once the LLMs have achieved a certain level of translation capability, and further increasing the size of parallel data does not provide additional benefits. To overcome this plateau associated with imitation-based SFT, we propose a preference-based approach built upon the Plackett-Luce model. The objective is to steer LLMs towards a more nuanced understanding of translation preferences from a holistic view, while also being more resilient in the absence of gold translations. We further build a dataset named MAPLE to verify the effectiveness of our approach, which includes multiple translations of varying quality for each source sentence. Extensive experiments demonstrate the superiority of our approach in "breaking the plateau" across diverse LLMs and test settings. Our in-depth analysis underscores the pivotal role of diverse translations and accurate preference scores in the success of our approach.


Direct Preference Optimization for Neural Machine Translation with Minimum Bayes Risk Decoding

arXiv.org Artificial Intelligence

Minimum Bayes Risk (MBR) decoding can significantly improve translation performance of Multilingual Large Language Models (MLLMs). However, MBR decoding is computationally expensive. We show how the recently developed Reinforcement Learning technique, Direct Preference Optimization (DPO), can fine-tune MLLMs to get the gains of MBR without any additional computation in inference. Our method uses only a small monolingual fine-tuning set and yields significantly improved performance on multiple NMT test sets compared to MLLMs without DPO.


Control-DAG: Constrained Decoding for Non-Autoregressive Directed Acyclic T5 using Weighted Finite State Automata

arXiv.org Artificial Intelligence

The Directed Acyclic Transformer is a fast non-autoregressive (NAR) model that performs well in Neural Machine Translation. Two issues prevent its application to general Natural Language Generation (NLG) tasks: frequent Out-Of-Vocabulary (OOV) errors and the inability to faithfully generate entity names. We introduce Control-DAG, a constrained decoding algorithm for our Directed Acyclic T5 (DA-T5) model which offers lexical, vocabulary and length control. We show that Control-DAG significantly enhances DA-T5 on the Schema Guided Dialogue and the DART datasets, establishing strong NAR results for Task-Oriented Dialogue and Data-to-Text NLG.


Few-Shot VQA with Frozen LLMs: A Tale of Two Approaches

arXiv.org Artificial Intelligence

Two approaches have emerged to input images into large language models (LLMs). The first is to caption images into natural language. The second is to map image feature embeddings into the domain of the LLM and pass the mapped embeddings directly to the LLM. The majority of recent few-shot multimodal work reports performance using architectures that employ variations of one of these two approaches. But they overlook an important comparison between them. We design a controlled and focused experiment to compare these two approaches to few-shot visual question answering (VQA) with LLMs. Our findings indicate that for Flan-T5 XL, a 3B parameter LLM, connecting visual embeddings directly to the LLM embedding space does not guarantee improved performance over using image captions. In the zero-shot regime, we find using textual image captions is better. In the few-shot regimes, how the in-context examples are selected determines which is better.


PERL: Parameter Efficient Reinforcement Learning from Human Feedback

arXiv.org Artificial Intelligence

Reinforcement Learning from Human Feedback (RLHF) has proven to be a strong method to align Pretrained Large Language Models (LLMs) with human preferences. But training models with RLHF is computationally expensive, and an overall complex process. In this work, we study RLHF where the underlying models are trained using the parameter efficient method of Low-Rank Adaptation (LoRA) introduced by Hu et al. [2021]. We investigate the setup of "Parameter Efficient Reinforcement Learning" (PERL), in which we perform reward model training and reinforcement learning using LoRA. We compare PERL to conventional fine-tuning (full-tuning) across various configurations for 7 benchmarks, including 2 novel datasets, of reward modeling and reinforcement learning. We find that PERL performs on par with the conventional RLHF setting, while training faster, and with less memory. This enables the high performance of RLHF, while reducing the computational burden that limits its adoption as an alignment technique for Large Language Models. We also release 2 novel thumbs up/down preference datasets: "Taskmaster Coffee", and "Taskmaster Ticketing" to promote research around RLHF.