Buyukates, Baturalp
FedGrAINS: Personalized SubGraph Federated Learning with Adaptive Neighbor Sampling
Ceyani, Emir, Xie, Han, Buyukates, Baturalp, Yang, Carl, Avestimehr, Salman
Graphs are crucial for modeling relational and biological data. As datasets grow larger in real-world scenarios, the risk of exposing sensitive information increases, making privacy-preserving training methods like federated learning (FL) essential to ensure data security and compliance with privacy regulations. Recently proposed personalized subgraph FL methods have become the de-facto standard for training personalized Graph Neural Networks (GNNs) in a federated manner while dealing with the missing links across clients' subgraphs due to privacy restrictions. However, personalized subgraph FL faces significant challenges due to the heterogeneity in client subgraphs, such as degree distributions among the nodes, which complicate federated training of graph models. To address these challenges, we propose \textit{FedGrAINS}, a novel data-adaptive and sampling-based regularization method for subgraph FL. FedGrAINS leverages generative flow networks (GFlowNets) to evaluate node importance concerning clients' tasks, dynamically adjusting the message-passing step in clients' GNNs. This adaptation reflects task-optimized sampling aligned with a trajectory balance objective. Experimental results demonstrate that the inclusion of \textit{FedGrAINS} as a regularizer consistently improves the FL performance compared to baselines that do not leverage such regularization.
Do Not Design, Learn: A Trainable Scoring Function for Uncertainty Estimation in Generative LLMs
Yaldiz, Duygu Nur, Bakman, Yavuz Faruk, Buyukates, Baturalp, Tao, Chenyang, Ramakrishna, Anil, Dimitriadis, Dimitrios, Avestimehr, Salman
In this work, we introduce the Learnable Response Scoring Function (LARS) for Uncertainty Estimation (UE) in generative Large Language Models (LLMs). Current scoring functions for probability-based UE, such as length-normalized scoring and semantic contribution-based weighting, are designed to solve specific aspects of the problem but exhibit limitations, including the inability to handle biased probabilities and under-performance in low-resource languages like Turkish. To address these issues, we propose LARS, a scoring function that leverages supervised data to capture complex dependencies between tokens and probabilities, thereby producing more reliable and calibrated response scores in computing the uncertainty of generations. Our extensive experiments across multiple datasets show that LARS substantially outperforms existing scoring functions considering various probability-based UE methods.
MARS: Meaning-Aware Response Scoring for Uncertainty Estimation in Generative LLMs
Bakman, Yavuz Faruk, Yaldiz, Duygu Nur, Buyukates, Baturalp, Tao, Chenyang, Dimitriadis, Dimitrios, Avestimehr, Salman
Generative Large Language Models (LLMs) are widely utilized for their excellence in various tasks. However, their tendency to produce inaccurate or misleading outputs poses a potential risk, particularly in high-stakes environments. Therefore, estimating the correctness of generative LLM outputs is an important task for enhanced reliability. Uncertainty Estimation (UE) in generative LLMs is an evolving domain, where SOTA probability-based methods commonly employ length-normalized scoring. In this work, we propose Meaning-Aware Response Scoring (MARS) as an alternative to length-normalized scoring for UE methods. MARS is a novel scoring function that considers the semantic contribution of each token in the generated sequence in the context of the question. We demonstrate that integrating MARS into UE methods results in a universal and significant improvement in UE performance. We conduct experiments using three distinct closed-book question-answering datasets across five popular pre-trained LLMs. Lastly, we validate the efficacy of MARS on a Medical QA dataset. Code can be found https://github.com/Ybakman/LLM_Uncertainity.
Maverick-Aware Shapley Valuation for Client Selection in Federated Learning
Yang, Mengwei, Jarin, Ismat, Buyukates, Baturalp, Avestimehr, Salman, Markopoulou, Athina
Federated Learning (FL) allows clients to train a model collaboratively without sharing their private data. One key challenge in practical FL systems is data heterogeneity, particularly in handling clients with rare data, also referred to as Mavericks. These clients own one or more data classes exclusively, and the model performance becomes poor without their participation. Thus, utilizing Mavericks throughout training is crucial. In this paper, we first design a Maverick-aware Shapley valuation that fairly evaluates the contribution of Mavericks. The main idea is to compute the clients' Shapley values (SV) class-wise, i.e., per label. Next, we propose FedMS, a Maverick-Shapley client selection mechanism for FL that intelligently selects the clients that contribute the most in each round, by employing our Maverick-aware SV-based contribution score. We show that, compared to an extensive list of baselines, FedMS achieves better model performance and fairer Shapley Rewards distribution.
Kick Bad Guys Out! Zero-Knowledge-Proof-Based Anomaly Detection in Federated Learning
Han, Shanshan, Wu, Wenxuan, Buyukates, Baturalp, Jin, Weizhao, Zhang, Qifan, Yao, Yuhang, Avestimehr, Salman, He, Chaoyang
Federated Learning (FL) systems are vulnerable to adversarial attacks, where malicious clients submit poisoned models to prevent the global model from converging or plant backdoors to induce the global model to misclassify some samples. Current defense methods fall short in real-world FL systems, as they either rely on impractical prior knowledge or introduce accuracy loss even when no attack happens. Also, these methods do not offer a protocol for verifying the execution, leaving participants doubtful about the correct execution of the mechanism. To address these issues, we propose a novel anomaly detection strategy designed for real-world FL systems. Our approach activates the defense only upon occurrence of attacks, and removes malicious models accurately, without affecting the benign ones. Additionally, our approach incorporates zero-knowledge proofs to ensure the integrity of defense mechanisms. Experimental results demonstrate the effectiveness of our approach in enhancing the security of FL systems against adversarial attacks.
FedMLSecurity: A Benchmark for Attacks and Defenses in Federated Learning and Federated LLMs
Han, Shanshan, Buyukates, Baturalp, Hu, Zijian, Jin, Han, Jin, Weizhao, Sun, Lichao, Wang, Xiaoyang, Wu, Wenxuan, Xie, Chulin, Yao, Yuhang, Zhang, Kai, Zhang, Qifan, Zhang, Yuhui, Avestimehr, Salman, He, Chaoyang
This paper introduces FedMLSecurity, a benchmark designed to simulate adversarial attacks and corresponding defense mechanisms in Federated Learning (FL). As an integral module of the open-sourced library FedML that facilitates FL algorithm development and performance comparison, FedMLSecurity enhances FedML's capabilities to evaluate security issues and potential remedies in FL. FedMLSecurity comprises two major components: FedMLAttacker that simulates attacks injected during FL training, and FedMLDefender that simulates defensive mechanisms to mitigate the impacts of the attacks. FedMLSecurity is open-sourced and can be customized to a wide range of machine learning models (e.g., Logistic Regression, ResNet, GAN, etc.) and federated optimizers (e.g., FedAVG, FedOPT, FedNOVA, etc.). FedMLSecurity can also be applied to Large Language Models (LLMs) easily, demonstrating its adaptability and applicability in various scenarios.
Proof-of-Contribution-Based Design for Collaborative Machine Learning on Blockchain
Buyukates, Baturalp, He, Chaoyang, Han, Shanshan, Fang, Zhiyong, Zhang, Yupeng, Long, Jieyi, Farahanchi, Ali, Avestimehr, Salman
We consider a project (model) owner that would like to train a model by utilizing the local private data and compute power of interested data owners, i.e., trainers. Our goal is to design a data marketplace for such decentralized collaborative/federated learning applications that simultaneously provides i) proof-of-contribution based reward allocation so that the trainers are compensated based on their contributions to the trained model; ii) privacy-preserving decentralized model training by avoiding any data movement from data owners; iii) robustness against malicious parties (e.g., trainers aiming to poison the model); iv) verifiability in the sense that the integrity, i.e., correctness, of all computations in the data market protocol including contribution assessment and outlier detection are verifiable through zero-knowledge proofs; and v) efficient and universal design. We propose a blockchain-based marketplace design to achieve all five objectives mentioned above. In our design, we utilize a distributed storage infrastructure and an aggregator aside from the project owner and the trainers. The aggregator is a processing node that performs certain computations, including assessing trainer contributions, removing outliers, and updating hyper-parameters. We execute the proposed data market through a blockchain smart contract. The deployed smart contract ensures that the project owner cannot evade payment, and honest trainers are rewarded based on their contributions at the end of training. Finally, we implement the building blocks of the proposed data market and demonstrate their applicability in practical scenarios through extensive experiments.