Goto

Collaborating Authors

 Bulò, Samuel R.


Context-Sensitive Decision Forests for Object Detection

Neural Information Processing Systems

In this paper we introduce Context-Sensitive Decision Forests - A new perspective to exploit contextual information in the popular decision forest framework for the object detection problem. They are tree-structured classifiers with the ability to access intermediate prediction (here: classification and regression) information during training and inference time. This intermediate prediction is available to each sample, which allows us to develop context-based decision criteria, used for refining the prediction process. In addition, we introduce a novel split criterion which in combination with a priority based way of constructing the trees, allows more accurate regression mode selection and hence improves the current context information. In our experiments, we demonstrate improved results for the task of pedestrian detection on the challenging TUD data set when compared to state-of-the-art methods.


A Game-Theoretic Approach to Hypergraph Clustering

Neural Information Processing Systems

Hypergraph clustering refers to the process of extracting maximally coherent groups from a set of objects using high-order (rather than pairwise) similarities. Traditional approaches to this problem are based on the idea of partitioning the input data into a user-defined number of classes, thereby obtaining the clusters as a by-product of the partitioning process. In this paper, we provide a radically different perspective to the problem. In contrast to the classical approach, we attempt to provide a meaningful formalization of the very notion of a cluster and we show that game theory offers an attractive and unexplored perspective that serves well our purpose. Specifically, we show that the hypergraph clustering problem can be naturally cast into a non-cooperative multi-player ``clustering game, whereby the notion of a cluster is equivalent to a classical game-theoretic equilibrium concept. From the computational viewpoint, we show that the problem of finding the equilibria of our clustering game is equivalent to locally optimizing a polynomial function over the standard simplex, and we provide a discrete-time dynamics to perform this optimization. Experiments are presented which show the superiority of our approach over state-of-the-art hypergraph clustering techniques.