Buettner, Florian
Grasping Partially Occluded Objects Using Autoencoder-Based Point Cloud Inpainting
Koebler, Alexander, Gross, Ralf, Buettner, Florian, Thon, Ingo
Flexible industrial production systems will play a central role in the future of manufacturing due to higher product individualization and customization. A key component in such systems is the robotic grasping of known or unknown objects in random positions. Real-world applications often come with challenges that might not be considered in grasping solutions tested in simulation or lab settings. Partial occlusion of the target object is the most prominent. Examples of occlusion can be supporting structures in the camera's field of view, sensor imprecision, or parts occluding each other due to the production process. In all these cases, the resulting lack of information leads to shortcomings in calculating grasping points. In this paper, we present an algorithm to reconstruct the missing information. Our inpainting solution facilitates the real-world utilization of robust object matching approaches for grasping point calculation. We demonstrate the benefit of our solution by enabling an existing grasping system embedded in a real-world industrial application to handle occlusions in the input. With our solution, we drastically decrease the number of objects discarded by the process.
How to Leverage Predictive Uncertainty Estimates for Reducing Catastrophic Forgetting in Online Continual Learning
Serra, Giuseppe, Werner, Ben, Buettner, Florian
Many real-world applications require machine-learning models to be able to deal with non-stationary data distributions and thus learn autonomously over an extended period of time, often in an online setting. One of the main challenges in this scenario is the so-called catastrophic forgetting (CF) for which the learning model tends to focus on the most recent tasks while experiencing predictive degradation on older ones. In the online setting, the most effective solutions employ a fixed-size memory buffer to store old samples used for replay when training on new tasks. Many approaches have been presented to tackle this problem. However, it is not clear how predictive uncertainty information for memory management can be leveraged in the most effective manner and conflicting strategies are proposed to populate the memory. Are the easiest-to-forget or the easiest-to-remember samples more effective in combating CF? Starting from the intuition that predictive uncertainty provides an idea of the samples' location in the decision space, this work presents an in-depth analysis of different uncertainty estimates and strategies for populating the memory. The investigation provides a better understanding of the characteristics data points should have for alleviating CF. Then, we propose an alternative method for estimating predictive uncertainty via the generalised variance induced by the negative log-likelihood. Finally, we demonstrate that the use of predictive uncertainty measures helps in reducing CF in different settings.
Provably Better Explanations with Optimized Aggregation of Feature Attributions
Decker, Thomas, Bhattarai, Ananta R., Gu, Jindong, Tresp, Volker, Buettner, Florian
Using feature attributions for post-hoc explanations is a common practice to understand and verify the predictions of opaque machine learning models. Despite the numerous techniques available, individual methods often produce inconsistent and unstable results, putting their overall reliability into question. In this work, we aim to systematically improve the quality of feature attributions by combining multiple explanations across distinct methods or their variations. For this purpose, we propose a novel approach to derive optimal convex combinations of feature attributions that yield provable improvements of desired quality criteria such as robustness or faithfulness to the model behavior. Through extensive experiments involving various model architectures and popular feature attribution techniques, we demonstrate that our combination strategy consistently outperforms individual methods and existing baselines.
DomainLab: A modular Python package for domain generalization in deep learning
Sun, Xudong, Feistner, Carla, Gossmann, Alexej, Schwarz, George, Umer, Rao Muhammad, Beer, Lisa, Rockenschaub, Patrick, Shrestha, Rahul Babu, Gruber, Armin, Chen, Nutan, Boushehri, Sayedali Shetab, Buettner, Florian, Marr, Carsten
Poor generalization performance caused by distribution shifts in unseen domains often hinders the trustworthy deployment of deep neural networks. Many domain generalization techniques address this problem by adding a domain invariant regularization loss terms during training. However, there is a lack of modular software that allows users to combine the advantages of different methods with minimal effort for reproducibility. DomainLab is a modular Python package for training user specified neural networks with composable regularization loss terms. Its decoupled design allows the separation of neural networks from regularization loss construction. Hierarchical combinations of neural networks, different domain generalization methods, and associated hyperparameters, can all be specified together with other experimental setup in a single configuration file. Hierarchical combinations of neural networks, different domain generalization methods, and associated hyperparameters, can all be specified together with other experimental setup in a single configuration file. In addition, DomainLab offers powerful benchmarking functionality to evaluate the generalization performance of neural networks in out-of-distribution data. The package supports running the specified benchmark on an HPC cluster or on a standalone machine. The package is well tested with over 95 percent coverage and well documented. From the user perspective, it is closed to modification but open to extension. The package is under the MIT license, and its source code, tutorial and documentation can be found at https://github.com/marrlab/DomainLab.
Consistent and Asymptotically Unbiased Estimation of Proper Calibration Errors
Popordanoska, Teodora, Gruber, Sebastian G., Tiulpin, Aleksei, Buettner, Florian, Blaschko, Matthew B.
Proper scoring rules evaluate the quality of probabilistic predictions, playing an essential role in the pursuit of accurate and well-calibrated models. Every proper score decomposes into two fundamental components -- proper calibration error and refinement -- utilizing a Bregman divergence. While uncertainty calibration has gained significant attention, current literature lacks a general estimator for these quantities with known statistical properties. To address this gap, we propose a method that allows consistent, and asymptotically unbiased estimation of all proper calibration errors and refinement terms. In particular, we introduce Kullback--Leibler calibration error, induced by the commonly used cross-entropy loss. As part of our results, we prove the relation between refinement and f-divergences, which implies information monotonicity in neural networks, regardless of which proper scoring rule is optimized. Our experiments validate empirically the claimed properties of the proposed estimator and suggest that the selection of a post-hoc calibration method should be determined by the particular calibration error of interest.
A Bias-Variance-Covariance Decomposition of Kernel Scores for Generative Models
Gruber, Sebastian G., Buettner, Florian
Generative models, like large language models, are becoming increasingly relevant in our daily lives, yet a theoretical framework to assess their generalization behavior and uncertainty does not exist. Particularly, the problem of uncertainty estimation is commonly solved in an ad-hoc manner and task dependent. For example, natural language approaches cannot be transferred to image generation. In this paper we introduce the first bias-variance-covariance decomposition for kernel scores and their associated entropy. We propose unbiased and consistent estimators for each quantity which only require generated samples but not the underlying model itself. As an application, we offer a generalization evaluation of diffusion models and discover how mode collapse of minority groups is a contrary phenomenon to overfitting. Further, we demonstrate that variance and predictive kernel entropy are viable measures of uncertainty for image, audio, and language generation. Specifically, our approach for uncertainty estimation is more predictive of performance on CoQA and TriviaQA question answering datasets than existing baselines and can also be applied to closed-source models.
Application-driven Validation of Posteriors in Inverse Problems
Adler, Tim J., Nรถlke, Jan-Hinrich, Reinke, Annika, Tizabi, Minu Dietlinde, Gruber, Sebastian, Trofimova, Dasha, Ardizzone, Lynton, Jaeger, Paul F., Buettner, Florian, Kรถthe, Ullrich, Maier-Hein, Lena
Current deep learning-based solutions for image analysis tasks are commonly incapable of handling problems to which multiple different plausible solutions exist. In response, posterior-based methods such as conditional Diffusion Models and Invertible Neural Networks have emerged; however, their translation is hampered by a lack of research on adequate validation. In other words, the way progress is measured often does not reflect the needs of the driving practical application. Closing this gap in the literature, we present the first systematic framework for the application-driven validation of posterior-based methods in inverse problems. As a methodological novelty, it adopts key principles from the field of object detection validation, which has a long history of addressing the question of how to locate and match multiple object instances in an image. Treating modes as instances enables us to perform mode-centric validation, using well-interpretable metrics from the application perspective. We demonstrate the value of our framework through instantiations for a synthetic toy example and two medical vision use cases: pose estimation in surgery and imaging-based quantification of functional tissue parameters for diagnostics. Our framework offers key advantages over common approaches to posterior validation in all three examples and could thus revolutionize performance assessment in inverse problems.
Uncertainty Estimates of Predictions via a General Bias-Variance Decomposition
Gruber, Sebastian G., Buettner, Florian
Reliably estimating the uncertainty of a prediction throughout the model lifecycle is crucial in many safety-critical applications. The most common way to measure this uncertainty is via the predicted confidence. While this tends to work well for in-domain samples, these estimates are unreliable under domain drift and restricted to classification. Alternatively, proper scores can be used for most predictive tasks but a bias-variance decomposition for model uncertainty does not exist in the current literature. In this work we introduce a general bias-variance decomposition for proper scores, giving rise to the Bregman Information as the variance term. We discover how exponential families and the classification log-likelihood are special cases and provide novel formulations. Surprisingly, we can express the classification case purely in the logit space. We showcase the practical relevance of this decomposition on several downstream tasks, including model ensembles and confidence regions. Further, we demonstrate how different approximations of the instance-level Bregman Information allow reliable out-of-distribution detection for all degrees of domain drift.
Encoding Domain Knowledge in Multi-view Latent Variable Models: A Bayesian Approach with Structured Sparsity
Qoku, Arber, Buettner, Florian
Many real-world systems are described not only by data from a single source but via multiple data views. In genomic medicine, for instance, patients can be characterized by data from different molecular layers. Latent variable models with structured sparsity are a commonly used tool for disentangling variation within and across data views. However, their interpretability is cumbersome since it requires a direct inspection and interpretation of each factor from domain experts. Here, we propose MuVI, a novel multi-view latent variable model based on a modified horseshoe prior for modeling structured sparsity. This facilitates the incorporation of limited and noisy domain knowledge, thereby allowing for an analysis of multi-view data in an inherently explainable manner. We demonstrate that our model (i) outperforms state-of-the-art approaches for modeling structured sparsity in terms of the reconstruction error and the precision/recall, (ii) robustly integrates noisy domain expertise in the form of feature sets, (iii) promotes the identifiability of factors and (iv) infers interpretable and biologically meaningful axes of variation in a real-world multi-view dataset of cancer patients.
Better Uncertainty Calibration via Proper Scores for Classification and Beyond
Gruber, Sebastian G., Buettner, Florian
With model trustworthiness being crucial for sensitive real-world applications, practitioners are putting more and more focus on improving the uncertainty calibration of deep neural networks. Calibration errors are designed to quantify the reliability of probabilistic predictions but their estimators are usually biased and inconsistent. In this work, we introduce the framework of proper calibration errors, which relates every calibration error to a proper score and provides a respective upper bound with optimal estimation properties. This relationship can be used to reliably quantify the model calibration improvement. We theoretically and empirically demonstrate the shortcomings of commonly used estimators compared to our approach. Due to the wide applicability of proper scores, this gives a natural extension of recalibration beyond classification.