Buchanan, E. Kelly
Brain-to-Text Benchmark '24: Lessons Learned
Willett, Francis R., Li, Jingyuan, Le, Trung, Fan, Chaofei, Chen, Mingfei, Shlizerman, Eli, Chen, Yue, Zheng, Xin, Okubo, Tatsuo S., Benster, Tyler, Lee, Hyun Dong, Kounga, Maxwell, Buchanan, E. Kelly, Zoltowski, David, Linderman, Scott W., Henderson, Jaimie M.
Speech brain-computer interfaces aim to decipher what a person is trying to say from neural activity alone, restoring communication to people with paralysis who have lost the ability to speak intelligibly. The Brain-to-Text Benchmark '24 and associated competition was created to foster the advancement of decoding algorithms that convert neural activity to text. Here, we summarize the lessons learned from the competition ending on June 1, 2024 (the top 4 entrants also presented their experiences in a recorded webinar). The largest improvements in accuracy were achieved using an ensembling approach, where the output of multiple independent decoders was merged using a fine-tuned large language model (an approach used by all 3 top entrants). Performance gains were also found by improving how the baseline recurrent neural network (RNN) model was trained, including by optimizing learning rate scheduling and by using a diphone training objective. Improving upon the model architecture itself proved more difficult, however, with attempts to use deep state space models or transformers not yet appearing to offer a benefit over the RNN baseline. The benchmark will remain open indefinitely to support further work towards increasing the accuracy of brain-to-text algorithms.
Archon: An Architecture Search Framework for Inference-Time Techniques
Saad-Falcon, Jon, Lafuente, Adrian Gamarra, Natarajan, Shlok, Maru, Nahum, Todorov, Hristo, Guha, Etash, Buchanan, E. Kelly, Chen, Mayee, Guha, Neel, Rรฉ, Christopher, Mirhoseini, Azalia
Inference-time techniques are emerging as highly effective tools to enhance large language model (LLM) capabilities. However, best practices for developing systems that combine these techniques remain underdeveloped due to our limited understanding of the utility of individual inference-time techniques and the interactions between them. Additionally, efficiently and automatically searching the space of model choices, inference-time techniques, and their compositions is challenging due to the large design space. To address these challenges, we introduce Archon, a modular framework for selecting, combining, and stacking layers of inference-time techniques to construct optimized LLM systems for target benchmarks. Rather than relying on a single LLM called once, we leverage a diverse set of LLMs and inference-time techniques, creating LLM systems greater than the sum of their parts. Archon defines an extensible design space, encompassing techniques such as generation ensembling, repeated sampling, ranking, fusion, critiquing, verification, and unit testing. It transforms the problem of building LLM systems into a hyperparameter optimization objective. Given the available LLMs, inference-time techniques, and compute budget, Archon utilizes hyperparameter search techniques to discover optimized architectures for target benchmark(s). We evaluate Archon architectures across a range of instruction-following, reasoning, and coding benchmarks, including MT-Bench, Arena-Hard-Auto, AlpacaEval 2.0, MixEval, MixEval Hard, MATH, and CodeContests. Archon architectures outperform frontier models, such as GPT-4o and Claude 3.5 Sonnet, on these benchmarks, achieving an average accuracy increase of 15.1 percentage points by using all available LLMs. We make our code and datasets available publicly on Github: https://github.com/ScalingIntelligence/Archon.
Pathologies of Predictive Diversity in Deep Ensembles
Abe, Taiga, Buchanan, E. Kelly, Pleiss, Geoff, Cunningham, John P.
Classical results establish that ensembles of small models benefit when predictive diversity is encouraged, through bagging, boosting, and similar. Here we demonstrate that this intuition does not carry over to ensembles of deep neural networks used for classification, and in fact the opposite can be true. Unlike regression models or small (unconfident) classifiers, predictions from large (confident) neural networks concentrate in vertices of the probability simplex. Thus, decorrelating these points necessarily moves the ensemble prediction away from vertices, harming confidence and moving points across decision boundaries. Through large scale experiments, we demonstrate that diversity-encouraging regularizers hurt the performance of high-capacity deep ensembles used for classification. Even more surprisingly, discouraging predictive diversity can be beneficial. Together this work strongly suggests that the best strategy for deep ensembles is utilizing more accurate, but likely less diverse, component models.
Deep Ensembles Work, But Are They Necessary?
Abe, Taiga, Buchanan, E. Kelly, Pleiss, Geoff, Zemel, Richard, Cunningham, John P.
Ensembling neural networks is an effective way to increase accuracy, and can often match the performance of larger models. This observation poses a natural question: given the choice between a deep ensemble and a single neural network with similar accuracy, is one preferable over the other? Recent work suggests that deep ensembles may offer benefits beyond predictive power: namely, uncertainty quantification and robustness to dataset shift. In this work, we demonstrate limitations to these purported benefits, and show that a single (but larger) neural network can replicate these qualities. First, we show that ensemble diversity, by any metric, does not meaningfully contribute to an ensemble's ability to detect out-of-distribution (OOD) data, and that one can estimate ensemble diversity by measuring the relative improvement of a single larger model. Second, we show that the OOD performance afforded by ensembles is strongly determined by their in-distribution (InD) performance, and -- in this sense -- is not indicative of any "effective robustness". While deep ensembles are a practical way to achieve performance improvement (in agreement with prior work), our results show that they may be a tool of convenience rather than a fundamentally better model class.