Bruns, Oleksandra
Semantic Web and Creative AI -- A Technical Report from ISWS 2023
Ahmad, Raia Abu, Alharbi, Reham, Barile, Roberto, Böckling, Martin, Bolanos, Francisco, Bonfitto, Sara, Bruns, Oleksandra, Celino, Irene, Chudasama, Yashrajsinh, Critelli, Martin, d'Amato, Claudia, D'Ippolito, Giada, Dasoulas, Ioannis, De Giorgis, Stefano, De Leo, Vincenzo, Di Bonaventura, Chiara, Di Panfilo, Marco, Dobriy, Daniil, Domingue, John, Duan, Xuemin, Dumontier, Michel, Efeoglu, Sefika, Eschauzier, Ruben, Ginwa, Fakih, Ferranti, Nicolas, Graciotti, Arianna, Hanisch, Philipp, Hannah, George, Heidari, Golsa, Hogan, Aidan, Hussein, Hassan, Jouglar, Alexane, Kalo, Jan-Christoph, Kieffer, Manoé, Klironomos, Antonis, Koch, Inês, Lajewska, Weronika, Lazzari, Nicolas, Lindekrans, Mikael, Lippolis, Anna Sofia, Llugiqi, Majlinda, Mancini, Eleonora, Marzi, Eleonora, Menotti, Laura, Flores, Daniela Milon, Nagowah, Soulakshmee, Neubert, Kerstin, Niazmand, Emetis, Norouzi, Ebrahim, Martinez, Beatriz Olarte, Oudshoorn, Anouk Michelle, Poltronieri, Andrea, Presutti, Valentina, Purohit, Disha, Raoufi, Ensiyeh, Ringwald, Celian, Rockstroh, Johanna, Rudolph, Sebastian, Sack, Harald, Saeed, Zafar, Saeedizade, Mohammad Javad, Sahbi, Aya, Santini, Cristian, Simic, Aleksandra, Sommer, Dennis, Sousa, Rita, Tan, Mary Ann, Tarikere, Vidyashree, Tietz, Tabea, Tirpitz, Liam, Tomasino, Arnaldo, van Harmelen, Frank, Vissoci, Joao, Woods, Caitlin, Zhang, Bohui, Zhang, Xinyue, Zheng, Heng
The International Semantic Web Research School (ISWS) is a week-long intensive program designed to immerse participants in the field. This document reports a collaborative effort performed by ten teams of students, each guided by a senior researcher as their mentor, attending ISWS 2023. Each team provided a different perspective to the topic of creative AI, substantiated by a set of research questions as the main subject of their investigation. The 2023 edition of ISWS focuses on the intersection of Semantic Web technologies and Creative AI. ISWS 2023 explored various intersections between Semantic Web technologies and creative AI. A key area of focus was the potential of LLMs as support tools for knowledge engineering. Participants also delved into the multifaceted applications of LLMs, including legal aspects of creative content production, humans in the loop, decentralised approaches to multimodal generative AI models, nanopublications and AI for personal scientific knowledge graphs, commonsense knowledge in automatic story and narrative completion, generative AI for art critique, prompt engineering, automatic music composition, commonsense prototyping and conceptual blending, and elicitation of tacit knowledge. As Large Language Models and semantic technologies continue to evolve, new exciting prospects are emerging: a future where the boundaries between creative expression and factual knowledge become increasingly permeable and porous, leading to a world of knowledge that is both informative and inspiring.
NFDIcore 2.0: A BFO-Compliant Ontology for Multi-Domain Research Infrastructures
Bruns, Oleksandra, Tietz, Tabea, Waitelonis, Joerg, Posthumus, Etienne, Sack, Harald
This paper presents NFDIcore 2.0, an ontology compliant with the Basic Formal Ontology (BFO) designed to represent the diverse research communities of the National Research Data Infrastructure (NFDI) in Germany. NFDIcore ensures the interoperability across various research disciplines, thereby facilitating cross-domain research. Each domain's individual requirements are addressed through specific ontology modules. This paper discusses lessons learned during the ontology development and mapping process, supported by practical validation through use cases in diverse research domains. The originality of NFDIcore lies in its adherence to BFO, the use of SWRL rules for efficient knowledge discovery, and its modular, extensible design tailored to meet the needs of heterogeneous research domains.
Multimodal Search on Iconclass using Vision-Language Pre-Trained Models
Santini, Cristian, Posthumus, Etienne, Tan, Mary Ann, Bruns, Oleksandra, Tietz, Tabea, Sack, Harald
Terminology sources, such as controlled vocabularies, thesauri and classification systems, play a key role in digitizing cultural heritage. However, Information Retrieval (IR) systems that allow to query and explore these lexical resources often lack an adequate representation of the semantics behind the user's search, which can be conveyed through multiple expression modalities (e.g., images, keywords or textual descriptions). This paper presents the implementation of a new search engine for one of the most widely used iconography classification system, Iconclass. The novelty of this system is the use of a pre-trained vision-language model, namely CLIP, to retrieve and explore Iconclass concepts using visual or textual queries.