Goto

Collaborating Authors

 Brunner, Daniel


Model-free front-to-end training of a large high performance laser neural network

arXiv.org Artificial Intelligence

Artificial neural networks (ANNs), have become ubiquitous and revolutionized many applications ranging from computer vision to medical diagnoses. However, they offer a fundamentally connectionist and distributed approach to computing, in stark contrast to classical computers that use the von Neumann architecture. This distinction has sparked renewed interest in developing unconventional hardware to support more efficient implementations of ANNs, rather than merely emulating them on traditional systems. Photonics stands out as a particularly promising platform, providing scalability, high speed, energy efficiency, and the ability for parallel information processing. However, fully realized autonomous optical neural networks (ONNs) with in-situ learning capabilities are still rare. In this work, we demonstrate a fully autonomous and parallel ONN using a multimode vertical cavity surface emitting laser (VCSEL) using off-the-shelf components. Our ONN is highly efficient and is scalable both in network size and inference bandwidth towards the GHz range. High performance hardware-compatible optimization algorithms are necessary in order to minimize reliance on external von Neumann computers to fully exploit the potential of ONNs. As such we present and extensively study several algorithms which are broadly compatible with a wide range of systems. We then apply these algorithms to optimize our ONN, and benchmark them using the MNIST dataset. We show that our ONN can achieve high accuracy and convergence efficiency, even under limited hardware resources. Crucially, we compare these different algorithms in terms of scaling and optimization efficiency in term of convergence time which is crucial when working with limited external resources. Our work provides some guidance for the design of future ONNs as well as a simple and flexible way to train them.


Limits of nonlinear and dispersive fiber propagation for photonic extreme learning

arXiv.org Artificial Intelligence

We report a generalized nonlinear Schr\"odinger equation simulation model of an extreme learning machine (ELM) based on optical fiber propagation. Using handwritten digit classification as a benchmark, we study how accuracy depends on propagation dynamics, as well as parameters governing spectral encoding, readout, and noise. Test accuracies of over 91% and 93% are found for propagation in the anomalous and normal dispersion regimes respectively. Our simulation results also suggest that quantum noise on the input pulses introduces an intrinsic penalty to ELM performance.


SwiLTra-Bench: The Swiss Legal Translation Benchmark

arXiv.org Artificial Intelligence

In Switzerland legal translation is uniquely important due to the country's four official languages and requirements for multilingual legal documentation. However, this process traditionally relies on professionals who must be both legal experts and skilled translators -- creating bottlenecks and impacting effective access to justice. To address this challenge, we introduce SwiLTra-Bench, a comprehensive multilingual benchmark of over 180K aligned Swiss legal translation pairs comprising laws, headnotes, and press releases across all Swiss languages along with English, designed to evaluate LLM-based translation systems. Our systematic evaluation reveals that frontier models achieve superior translation performance across all document types, while specialized translation systems excel specifically in laws but under-perform in headnotes. Through rigorous testing and human expert validation, we demonstrate that while fine-tuning open SLMs significantly improves their translation quality, they still lag behind the best zero-shot prompted frontier models such as Claude-3.5-Sonnet. Additionally, we present SwiLTra-Judge, a specialized LLM evaluation system that aligns best with human expert assessments.


Impact of white noise in artificial neural networks trained for classification: performance and noise mitigation strategies

arXiv.org Artificial Intelligence

In recent years, the hardware implementation of neural networks, leveraging physical coupling and analog neurons has substantially increased in relevance. Such nonlinear and complex physical networks provide significant advantages in speed and energy efficiency, but are potentially susceptible to internal noise when compared to digital emulations of such networks. In this work, we consider how additive and multiplicative Gaussian white noise on the neuronal level can affect the accuracy of the network when applied for specific tasks and including a softmax function in the readout layer. We adapt several noise reduction techniques to the essential setting of classification tasks, which represent a large fraction of neural network computing. We find that these adjusted concepts are highly effective in mitigating the detrimental impact of noise.


Training of Physical Neural Networks

arXiv.org Artificial Intelligence

Physical neural networks (PNNs) are a class of neural-like networks that leverage the properties of physical systems to perform computation. While PNNs are so far a niche research area with small-scale laboratory demonstrations, they are arguably one of the most underappreciated important opportunities in modern AI. Could we train AI models 1000x larger than current ones? Could we do this and also have them perform inference locally and privately on edge devices, such as smartphones or sensors? Research over the past few years has shown that the answer to all these questions is likely "yes, with enough research": PNNs could one day radically change what is possible and practical for AI systems. To do this will however require rethinking both how AI models work, and how they are trained - primarily by considering the problems through the constraints of the underlying hardware physics. To train PNNs at large scale, many methods including backpropagation-based and backpropagation-free approaches are now being explored. These methods have various trade-offs, and so far no method has been shown to scale to the same scale and performance as the backpropagation algorithm widely used in deep learning today. However, this is rapidly changing, and a diverse ecosystem of training techniques provides clues for how PNNs may one day be utilized to create both more efficient realizations of current-scale AI models, and to enable unprecedented-scale models.


Automatic Anonymization of Swiss Federal Supreme Court Rulings

arXiv.org Artificial Intelligence

Releasing court decisions to the public relies on proper anonymization to protect all involved parties, where necessary. The Swiss Federal Supreme Court relies on an existing system that combines different traditional computational methods with human experts. In this work, we enhance the existing anonymization software using a large dataset annotated with entities to be anonymized. We compared BERT-based models with models pre-trained on in-domain data. Our results show that using in-domain data to pre-train the models further improves the F1-score by more than 5\% compared to existing models. Our work demonstrates that combining existing anonymization methods, such as regular expressions, with machine learning can further reduce manual labor and enhance automatic suggestions.


Convergence and scaling of Boolean-weight optimization for hardware reservoirs

arXiv.org Artificial Intelligence

Hardware implementation of neural network are an essential step to implement next generation efficient and powerful artificial intelligence solutions. Besides the realization of a parallel, efficient and scalable hardware architecture, the optimization of the system's extremely large parameter space with sampling-efficient approaches is essential. Here, we analytically derive the scaling laws for highly efficient Coordinate Descent applied to optimizing the readout layer of a random recurrently connection neural network, a reservoir. We demonstrate that the convergence is exponential and scales linear with the network's number of neurons. Our results perfectly reproduce the convergence and scaling of a large-scale photonic reservoir implemented in a proof-of-concept experiment. Our work therefore provides a solid foundation for such optimization in hardware networks, and identifies future directions that are promising for optimizing convergence speed during learning leveraging measures of a neural network's amplitude statistics and the weight update rule.


Reservoir-size dependent learning in analogue neural networks

arXiv.org Machine Learning

The implementation of artificial neural networks in hardware substrates is a major interdisciplinary enterprise. Well suited candidates for physical implementations must combine nonlinear neurons with dedicated and efficient hardware solutions for both connectivity and training. Reservoir computing addresses the problems related with the network connectivity and training in an elegant and efficient way. However, important questions regarding impact of reservoir size and learning routines on the convergence-speed during learning remain unaddressed. Here, we study in detail the learning process of a recently demonstrated photonic neural network based on a reservoir. We use a greedy algorithm to train our neural network for the task of chaotic signals prediction and analyze the learning-error landscape. Our results unveil fundamental properties of the system's optimization hyperspace. Particularly, we determine the convergence speed of learning as a function of reservoir size and find exceptional, close to linear scaling. This linear dependence, together with our parallel diffractive coupling, represent optimal scaling conditions for our photonic neural network scheme.