Goto

Collaborating Authors

 Bronzini, Marco


Unveiling LLMs: The Evolution of Latent Representations in a Temporal Knowledge Graph

arXiv.org Artificial Intelligence

Large Language Models (LLMs) demonstrate an impressive capacity to recall a vast range of common factual knowledge information. However, unravelling the underlying reasoning of LLMs and explaining their internal mechanisms of exploiting this factual knowledge remain active areas of investigation. Our work analyzes the factual knowledge encoded in the latent representation of LLMs when prompted to assess the truthfulness of factual claims. We propose an end-to-end framework that jointly decodes the factual knowledge embedded in the latent space of LLMs from a vector space to a set of ground predicates and represents its evolution across the layers using a temporal knowledge graph. Our framework relies on the technique of activation patching which intervenes in the inference computation of a model by dynamically altering its latent representations. Consequently, we neither rely on external models nor training processes. We showcase our framework with local and global interpretability analyses using two claim verification datasets: FEVER and CLIMATE-FEVER. The local interpretability analysis exposes different latent errors from representation to multi-hop reasoning errors. On the other hand, the global analysis uncovered patterns in the underlying evolution of the model's factual knowledge (e.g., store-and-seek factual information). By enabling graph-based analyses of the latent representations, this work represents a step towards the mechanistic interpretability of LLMs.


Glitter or Gold? Deriving Structured Insights from Sustainability Reports via Large Language Models

arXiv.org Artificial Intelligence

Over the last decade, several regulatory bodies have started requiring the disclosure of non-financial information from publicly listed companies, in light of the investors' increasing attention to Environmental, Social, and Governance (ESG) issues. Publicly released information on sustainability practices is often disclosed in diverse, unstructured, and multi-modal documentation. This poses a challenge in efficiently gathering and aligning the data into a unified framework to derive insights related to Corporate Social Responsibility (CSR). Thus, using Information Extraction (IE) methods becomes an intuitive choice for delivering insightful and actionable data to stakeholders. In this study, we employ Large Language Models (LLMs), In-Context Learning, and the Retrieval-Augmented Generation (RAG) paradigm to extract structured insights related to ESG aspects from companies' sustainability reports. We then leverage graph-based representations to conduct statistical analyses concerning the extracted insights. These analyses revealed that ESG criteria cover a wide range of topics, exceeding 500, often beyond those considered in existing categorizations, and are addressed by companies through a variety of initiatives. Moreover, disclosure similarities emerged among companies from the same region or sector, validating ongoing hypotheses in the ESG literature. Lastly, by incorporating additional company attributes into our analyses, we investigated which factors impact the most on companies' ESG ratings, showing that ESG disclosure affects the obtained ratings more than other financial or company data.