Goto

Collaborating Authors

 Braunstein, A.


Effectiveness of probabilistic contact tracing in epidemic containment: the role of super-spreaders and transmission paths reconstruction

arXiv.org Artificial Intelligence

The recent COVID-19 pandemic underscores the significance of early-stage non-pharmacological intervention strategies. The widespread use of masks and the systematic implementation of contact tracing strategies provide a potentially equally effective and socially less impactful alternative to more conventional approaches, such as large-scale mobility restrictions. However, manual contact tracing faces strong limitations in accessing the network of contacts, and the scalability of currently implemented protocols for smartphone-based digital contact tracing becomes impractical during the rapid expansion phases of the outbreaks, due to the surge in exposure notifications and associated tests. A substantial improvement in digital contact tracing can be obtained through the integration of probabilistic techniques for risk assessment that can more effectively guide the allocation of new diagnostic tests. In this study, we first quantitatively analyze the diagnostic and social costs associated with these containment measures based on contact tracing, employing three state-of-the-art models of SARS-CoV-2 spreading. Our results suggest that probabilistic techniques allow for more effective mitigation at a lower cost. Secondly, our findings reveal a remarkable efficacy of probabilistic contact-tracing techniques in capturing backward propagations and super-spreading events, relevant features of the diffusion of many pathogens, including SARS-CoV-2.


Finding undetected protein associations in cell signaling by belief propagation

arXiv.org Artificial Intelligence

External information propagates in the cell mainly through signaling cascades and transcriptional activation, allowing it to react to a wide spectrum of environmental changes. High throughput experiments identify numerous molecular components of such cascades that may, however, interact through unknown partners. Some of them may be detected using data coming from the integration of a protein-protein interaction network and mRNA expression profiles. This inference problem can be mapped onto the problem of finding appropriate optimal connected subgraphs of a network defined by these datasets. The optimization procedure turns out to be computationally intractable in general. Here we present a new distributed algorithm for this task, inspired from statistical physics, and apply this scheme to alpha factor and drug perturbations data in yeast. We identify the role of the COS8 protein, a member of a gene family of previously unknown function, and validate the results by genetic experiments. The algorithm we present is specially suited for very large datasets, can run in parallel, and can be adapted to other problems in systems biology. On renowned benchmarks it outperforms other algorithms in the field.