Braun, Daniel A.
Mixture-of-Variational-Experts for Continual Learning
Hihn, Heinke, Braun, Daniel A.
One significant shortcoming of machine learning is the poor ability of models to solve new problems quicker and without forgetting acquired knowledge. To better understand this issue, continual learning has emerged to systematically investigate learning protocols where the model sequentially observes samples generated by a series of tasks. First, we propose an optimality principle that facilitates a trade-off between learning and forgetting. We derive this principle from an information-theoretic formulation of bounded rationality and show its connections to other continual learning methods. Second, based on this principle, we propose a neural network layer for continual learning, called Mixture-of-Variational-Experts (MoVE), that alleviates forgetting while enabling the beneficial transfer of knowledge to new tasks. Our experiments on variants of the MNIST and CIFAR10 datasets demonstrate the competitive performance of MoVE layers when compared to state-of-the-art approaches.
Specialization in Hierarchical Learning Systems
Hihn, Heinke, Braun, Daniel A.
Joining multiple decision-makers together is a powerful way to obtain more sophisticated decision-making systems, but requires to address the questions of division of labor and specialization. We investigate in how far information constraints in hierarchies of experts not only provide a principled method for regularization but also to enforce specialization. In particular, we devise an information-theoretically motivated on-line learning rule that allows partitioning of the problem space into multiple sub-problems that can be solved by the individual experts. We demonstrate two different ways to apply our method: (i) partitioning problems based on individual data samples and (ii) based on sets of data samples representing tasks. Approach (i) equips the system with the ability to solve complex decision-making problems by finding an optimal combination of local expert decision-makers. Approach (ii) leads to decision-makers specialized in solving families of tasks, which equips the system with the ability to solve meta-learning problems. We show the broad applicability of our approach on a range of problems including classification, regression, density estimation, and reinforcement learning problems, both in the standard machine learning setup and in a meta-learning setting.
An Information-theoretic On-line Learning Principle for Specialization in Hierarchical Decision-Making Systems
Hihn, Heinke, Gottwald, Sebastian, Braun, Daniel A.
Information-theoretic bounded rationality describes utility-optimizing decision-makers whose limited information-processing capabilities are formalized by information constraints. One of the consequences of bounded rationality is that resource-limited decision-makers can join together to solve decision-making problems that are beyond the capabilities of each individual. Here, we study an information-theoretic principle that drives division of labor and specialization when decision-makers with information constraints are joined together. We devise an on-line learning rule of this principle that learns a partitioning of the problem space such that it can be solved by specialized linear policies. We demonstrate the approach for decision-making problems whose complexity exceeds the capabilities of individual decision-makers, but can be solved by combining the decision-makers optimally. The strength of the model is that it is abstract and principled, yet has direct applications in classification, regression, reinforcement learning and adaptive control.
Bounded rational decision-making from elementary computations that reduce uncertainty
Gottwald, Sebastian, Braun, Daniel A.
In its most basic form, decision-making can be viewed as a computational process that progressively eliminates alternatives, thereby reducing uncertainty. Such processes are generally costly, meaning that the amount of uncertainty that can be reduced is limited by the amount of available computational resources. Here, we introduce the notion of elementary computation based on a fundamental principle for probability transfers that reduce uncertainty. Elementary computations can be considered as the inverse of Pigou-Dalton transfers applied to probability distributions, closely related to the concepts of majorization, T-transforms, and generalized entropies that induce a preorder on the space of probability distributions. As a consequence we can define resource cost functions that are order-preserving and therefore monotonic with respect to the uncertainty reduction. This leads to a comprehensive notion of decision-making processes with limited resources. Along the way, we prove several new results on majorization theory, as well as on entropy and divergence measures.
Systems of bounded rational agents with information-theoretic constraints
Gottwald, Sebastian, Braun, Daniel A.
Specialization and hierarchical organization are important features of efficient collaboration in economical, artificial, and biological systems. Here, we investigate the hypothesis that both features can be explained by the fact that each entity of such a system is limited in a certain way. We propose an information-theoretic approach based on a Free Energy principle, in order to computationally analyze systems of bounded rational agents that deal with such limitations optimally. We find that specialization allows to focus on fewer tasks, thus leading to a more efficient execution, but in turn requires coordination in hierarchical structures of specialized experts and coordinating units. Our results suggest that hierarchical architectures of specialized units at lower levels that are coordinated by units at higher levels are optimal, given that each unit's information-processing capability is limited and conforms to constraints on complexity costs.
Bounded Rational Decision-Making with Adaptive Neural Network Priors
Hihn, Heinke, Gottwald, Sebastian, Braun, Daniel A.
Bounded rationality investigates utility-optimizing decision-makers with limited information-processing power. In particular, information theoretic bounded rationality models formalize resource constraints abstractly in terms of relative Shannon information, namely the Kullback-Leibler Divergence between the agents' prior and posterior policy. Between prior and posterior lies an anytime deliberation process that can be instantiated by sample-based evaluations of the utility function through Markov Chain Monte Carlo (MCMC) optimization. The most simple model assumes a fixed prior and can relate abstract information-theoretic processing costs to the number of sample evaluations. However, more advanced models would also address the question of learning, that is how the prior is adapted over time such that generated prior proposals become more efficient. In this work we investigate generative neural networks as priors that are optimized concurrently with anytime sample-based decision-making processes such as MCMC. We evaluate this approach on toy examples.
An information-theoretic on-line update principle for perception-action coupling
Peng, Zhen, Genewein, Tim, Leibfried, Felix, Braun, Daniel A.
Inspired by findings of sensorimotor coupling in humans and animals, there has recently been a growing interest in the interaction between action and perception in robotic systems [Bogh et al., 2016]. Here we consider perception and action as two serial information channels with limited information-processing capacity. We follow [Genewein et al., 2015] and formulate a constrained optimization problem that maximizes utility under limited information-processing capacity in the two channels. As a solution we obtain an optimal perceptual channel and an optimal action channel that are coupled such that perceptual information is optimized with respect to downstream processing in the action module. The main novelty of this study is that we propose an online optimization procedure to find bounded-optimal perception and action channels in parameterized serial perception-action systems. In particular, we implement the perceptual channel as a multi-layer neural network and the action channel as a multinomial distribution. We illustrate our method in a NAO robot simulator with a simplified cup lifting task.
Information-Theoretic Bounded Rationality
Ortega, Pedro A., Braun, Daniel A., Dyer, Justin, Kim, Kee-Eung, Tishby, Naftali
Bounded rationality, that is, decision-making and planning under resource limitations, is widely regarded as an important open problem in artificial intelligence, reinforcement learning, computational neuroscience and economics. This paper offers a consolidated presentation of a theory of bounded rationality based on information-theoretic ideas. We provide a conceptual justification for using the free energy functional as the objective function for characterizing bounded-rational decisions. This functional possesses three crucial properties: it controls the size of the solution space; it has Monte Carlo planners that are exact, yet bypass the need for exhaustive search; and it captures model uncertainty arising from lack of evidence or from interacting with other agents having unknown intentions. We discuss the single-step decision-making case, and show how to extend it to sequential decisions using equivalence transformations. This extension yields a very general class of decision problems that encompass classical decision rules (e.g. EXPECTIMAX and MINIMAX) as limit cases, as well as trust- and risk-sensitive planning.
Bounded Rational Decision-Making in Changing Environments
Grau-Moya, Jordi, Braun, Daniel A.
A perfectly rational decision-maker chooses the best action with the highest utility gain from a set of possible actions. The optimality principles that describe such decision processes do not take into account the computational costs of finding the optimal action. Bounded rational decision-making addresses this problem by specifically trading off information-processing costs and expected utility. Interestingly, a similar trade-off between energy and entropy arises when describing changes in thermodynamic systems. This similarity has been recently used to describe bounded rational agents. Crucially, this framework assumes that the environment does not change while the decision-maker is computing the optimal policy. When this requirement is not fulfilled, the decision-maker will suffer inefficiencies in utility, that arise because the current policy is optimal for an environment in the past. Here we borrow concepts from non-equilibrium thermodynamics to quantify these inefficiencies and illustrate with simulations its relationship with computational resources.
Abstraction in decision-makers with limited information processing capabilities
Genewein, Tim, Braun, Daniel A.
A distinctive property of human and animal intelligence is the ability to form abstractions by neglecting irrelevant information which allows to separate structure from noise. From an information theoretic point of view abstractions are desirable because they allow for very efficient information processing. In artificial systems abstractions are often implemented through computationally costly formations of groups or clusters. In this work we establish the relation between the free-energy framework for decision making and rate-distortion theory and demonstrate how the application of rate-distortion for decision-making leads to the emergence of abstractions. We argue that abstractions are induced due to a limit in information processing capacity.