Bowden, Richard
The Radiance of Neural Fields: Democratizing Photorealistic and Dynamic Robotic Simulation
Nuthall, Georgina, Bowden, Richard, Mendez, Oscar
As robots increasingly coexist with humans, they must navigate complex, dynamic environments rich in visual information and implicit social dynamics, like when to yield or move through crowds. Addressing these challenges requires significant advances in vision-based sensing and a deeper understanding of socio-dynamic factors, particularly in tasks like navigation. To facilitate this, robotics researchers need advanced simulation platforms offering dynamic, photorealistic environments with realistic actors. Unfortunately, most existing simulators fall short, prioritizing geometric accuracy over visual fidelity, and employing unrealistic agents with fixed trajectories and low-quality visuals. To overcome these limitations, we developed a simulator that incorporates three essential elements: (1) photorealistic neural rendering of environments, (2) neurally animated human entities with behavior management, and (3) an ego-centric robotic agent providing multi-sensor output. By utilizing advanced neural rendering techniques in a dual-NeRF simulator, our system produces high-fidelity, photorealistic renderings of both environments and human entities. Additionally, it integrates a state-of-the-art Social Force Model to model dynamic human-human and human-robot interactions, creating the first photorealistic and accessible human-robot simulation system powered by neural rendering.
Sign Stitching: A Novel Approach to Sign Language Production
Walsh, Harry, Saunders, Ben, Bowden, Richard
Sign Language Production (SLP) is a challenging task, given the limited resources available and the inherent diversity within sign data. As a result, previous works have suffered from the problem of regression to the mean, leading to under-articulated and incomprehensible signing. In this paper, we propose using dictionary examples and a learnt codebook of facial expressions to create expressive sign language sequences. However, simply concatenating signs and adding the face creates robotic and unnatural sequences. To address this we present a 7-step approach to effectively stitch sequences together. First, by normalizing each sign into a canonical pose, cropping, and stitching we create a continuous sequence. Then, by applying filtering in the frequency domain and resampling each sign, we create cohesive natural sequences that mimic the prosody found in the original data. We leverage a SignGAN model to map the output to a photo-realistic signer and present a complete Text-to-Sign (T2S) SLP pipeline. Our evaluation demonstrates the effectiveness of the approach, showcasing state-of-the-art performance across all datasets. Finally, a user evaluation shows our approach outperforms the baseline model and is capable of producing realistic sign language sequences.
Giving a Hand to Diffusion Models: a Two-Stage Approach to Improving Conditional Human Image Generation
Pelykh, Anton, Sincan, Ozge Mercanoglu, Bowden, Richard
Recent years have seen significant progress in human image generation, particularly with the advancements in diffusion models. However, existing diffusion methods encounter challenges when producing consistent hand anatomy and the generated images often lack precise control over the hand pose. To address this limitation, we introduce a novel approach to pose-conditioned human image generation, dividing the process into two stages: hand generation and subsequent body outpainting around the hands. We propose training the hand generator in a multi-task setting to produce both hand images and their corresponding segmentation masks, and employ the trained model in the first stage of generation. An adapted ControlNet model is then used in the second stage to outpaint the body around the generated hands, producing the final result. A novel blending technique is introduced to preserve the hand details during the second stage that combines the results of both stages in a coherent way. This involves sequential expansion of the outpainted region while fusing the latent representations, to ensure a seamless and cohesive synthesis of the final image. Experimental evaluations demonstrate the superiority of our proposed method over state-of-the-art techniques, in both pose accuracy and image quality, as validated on the HaGRID dataset. Our approach not only enhances the quality of the generated hands but also offers improved control over hand pose, advancing the capabilities of pose-conditioned human image generation. The source code of the proposed approach is available at https://github.com/apelykh/hand-to-diffusion.
A Data-Driven Representation for Sign Language Production
Walsh, Harry, Ravanshad, Abolfazl, Rahmani, Mariam, Bowden, Richard
Phonetic representations are used when recording spoken languages, but no equivalent exists for recording signed languages. As a result, linguists have proposed several annotation systems that operate on the gloss or sub-unit level; however, these resources are notably irregular and scarce. Sign Language Production (SLP) aims to automatically translate spoken language sentences into continuous sequences of sign language. However, current state-of-the-art approaches rely on scarce linguistic resources to work. This has limited progress in the field. This paper introduces an innovative solution by transforming the continuous pose generation problem into a discrete sequence generation problem. Thus, overcoming the need for costly annotation. Although, if available, we leverage the additional information to enhance our approach. By applying Vector Quantisation (VQ) to sign language data, we first learn a codebook of short motions that can be combined to create a natural sequence of sign. Where each token in the codebook can be thought of as the lexicon of our representation. Then using a transformer we perform a translation from spoken language text to a sequence of codebook tokens. Each token can be directly mapped to a sequence of poses allowing the translation to be performed by a single network. Furthermore, we present a sign stitching method to effectively join tokens together. We evaluate on the RWTH-PHOENIX-Weather-2014T (PHOENIX14T) and the more challenging Meine DGS Annotated (mDGS) datasets. An extensive evaluation shows our approach outperforms previous methods, increasing the BLEU-1 back translation score by up to 72%.
Select and Reorder: A Novel Approach for Neural Sign Language Production
Walsh, Harry, Saunders, Ben, Bowden, Richard
This paper introduces Select and Reorder (S&R), a novel approach that addresses data scarcity by breaking down the translation process into two distinct steps: Gloss Selection (GS) and Gloss Reordering (GR). Our method leverages large spoken language models and the substantial lexical overlap between source spoken languages and target sign languages to establish an initial alignment. Both steps make use of Non-AutoRegressive (NAR) decoding for reduced computation and faster inference speeds. Through this disentanglement of tasks, we achieve state-of-the-art BLEU and Rouge scores on the Meine DGS Annotated (mDGS) dataset, demonstrating a substantial BLUE-1 improvement of 37.88% in Text to Gloss (T2G) Translation. This innovative approach paves the way for more effective translation models for sign languages, even in resource-constrained settings.
Kick Back & Relax++: Scaling Beyond Ground-Truth Depth with SlowTV & CribsTV
Spencer, Jaime, Russell, Chris, Hadfield, Simon, Bowden, Richard
Self-supervised learning is the key to unlocking generic computer vision systems. By eliminating the reliance on ground-truth annotations, it allows scaling to much larger data quantities. Unfortunately, self-supervised monocular depth estimation (SS-MDE) has been limited by the absence of diverse training data. Existing datasets have focused exclusively on urban driving in densely populated cities, resulting in models that fail to generalize beyond this domain. To address these limitations, this paper proposes two novel datasets: SlowTV and CribsTV. These are large-scale datasets curated from publicly available YouTube videos, containing a total of 2M training frames. They offer an incredibly diverse set of environments, ranging from snowy forests to coastal roads, luxury mansions and even underwater coral reefs. We leverage these datasets to tackle the challenging task of zero-shot generalization, outperforming every existing SS-MDE approach and even some state-of-the-art supervised methods. The generalization capabilities of our models are further enhanced by a range of components and contributions: 1) learning the camera intrinsics, 2) a stronger augmentation regime targeting aspect ratio changes, 3) support frame randomization, 4) flexible motion estimation, 5) a modern transformer-based architecture. We demonstrate the effectiveness of each component in extensive ablation experiments. To facilitate the development of future research, we make the datasets, code and pretrained models available to the public at https://github.com/jspenmar/slowtv_monodepth.
Gloss Alignment Using Word Embeddings
Walsh, Harry, Sincan, Ozge Mercanoglu, Saunders, Ben, Bowden, Richard
Capturing and annotating Sign language datasets is a time consuming and costly process. Current datasets are orders of magnitude too small to successfully train unconstrained \acf{slt} models. As a result, research has turned to TV broadcast content as a source of large-scale training data, consisting of both the sign language interpreter and the associated audio subtitle. However, lack of sign language annotation limits the usability of this data and has led to the development of automatic annotation techniques such as sign spotting. These spottings are aligned to the video rather than the subtitle, which often results in a misalignment between the subtitle and spotted signs. In this paper we propose a method for aligning spottings with their corresponding subtitles using large spoken language models. Using a single modality means our method is computationally inexpensive and can be utilized in conjunction with existing alignment techniques. We quantitatively demonstrate the effectiveness of our method on the \acf{mdgs} and \acf{bobsl} datasets, recovering up to a 33.22 BLEU-1 score in word alignment.
Kick Back & Relax: Learning to Reconstruct the World by Watching SlowTV
Spencer, Jaime, Russell, Chris, Hadfield, Simon, Bowden, Richard
Self-supervised monocular depth estimation (SS-MDE) has the potential to scale to vast quantities of data. Unfortunately, existing approaches limit themselves to the automotive domain, resulting in models incapable of generalizing to complex environments such as natural or indoor settings. To address this, we propose a large-scale SlowTV dataset curated from YouTube, containing an order of magnitude more data than existing automotive datasets. SlowTV contains 1.7M images from a rich diversity of environments, such as worldwide seasonal hiking, scenic driving and scuba diving. Using this dataset, we train an SS-MDE model that provides zero-shot generalization to a large collection of indoor/outdoor datasets. The resulting model outperforms all existing SSL approaches and closes the gap on supervised SoTA, despite using a more efficient architecture. We additionally introduce a collection of best-practices to further maximize performance and zero-shot generalization. This includes 1) aspect ratio augmentation, 2) camera intrinsic estimation, 3) support frame randomization and 4) flexible motion estimation. Code is available at https://github.com/jspenmar/slowtv_monodepth.
Learning Adaptive Neighborhoods for Graph Neural Networks
Saha, Avishkar, Mendez, Oscar, Russell, Chris, Bowden, Richard
Graph convolutional networks (GCNs) enable end-to-end learning on graph structured data. However, many works assume a given graph structure. When the input graph is noisy or unavailable, one approach is to construct or learn a latent graph structure. These methods typically fix the choice of node degree for the entire graph, which is suboptimal. Instead, we propose a novel end-to-end differentiable graph generator which builds graph topologies where each node selects both its neighborhood and its size. Our module can be readily integrated into existing pipelines involving graph convolution operations, replacing the predetermined or existing adjacency matrix with one that is learned, and optimized, as part of the general objective. As such it is applicable to any GCN. We integrate our module into trajectory prediction, point cloud classification and node classification pipelines resulting in improved accuracy over other structure-learning methods across a wide range of datasets and GCN backbones.
The Second Monocular Depth Estimation Challenge
Spencer, Jaime, Qian, C. Stella, Trescakova, Michaela, Russell, Chris, Hadfield, Simon, Graf, Erich W., Adams, Wendy J., Schofield, Andrew J., Elder, James, Bowden, Richard, Anwar, Ali, Chen, Hao, Chen, Xiaozhi, Cheng, Kai, Dai, Yuchao, Hoa, Huynh Thai, Hossain, Sadat, Huang, Jianmian, Jing, Mohan, Li, Bo, Li, Chao, Li, Baojun, Liu, Zhiwen, Mattoccia, Stefano, Mercelis, Siegfried, Nam, Myungwoo, Poggi, Matteo, Qi, Xiaohua, Ren, Jiahui, Tang, Yang, Tosi, Fabio, Trinh, Linh, Uddin, S. M. Nadim, Umair, Khan Muhammad, Wang, Kaixuan, Wang, Yufei, Wang, Yixing, Xiang, Mochu, Xu, Guangkai, Yin, Wei, Yu, Jun, Zhang, Qi, Zhao, Chaoqiang
This paper discusses the results for the second edition of the Monocular Depth Estimation Challenge (MDEC). This edition was open to methods using any form of supervision, including fully-supervised, self-supervised, multi-task or proxy depth. The challenge was based around the SYNS-Patches dataset, which features a wide diversity of environments with high-quality dense ground-truth. This includes complex natural environments, e.g. forests or fields, which are greatly underrepresented in current benchmarks. The challenge received eight unique submissions that outperformed the provided SotA baseline on any of the pointcloud- or image-based metrics. The top supervised submission improved relative F-Score by 27.62%, while the top self-supervised improved it by 16.61%. Supervised submissions generally leveraged large collections of datasets to improve data diversity. Self-supervised submissions instead updated the network architecture and pretrained backbones. These results represent a significant progress in the field, while highlighting avenues for future research, such as reducing interpolation artifacts at depth boundaries, improving self-supervised indoor performance and overall natural image accuracy.