Goto

Collaborating Authors

 Botvinick, Matthew


Meta-in-context learning in large language models

arXiv.org Artificial Intelligence

Large language models have shown tremendous performance in a variety of tasks. In-context learning -- the ability to improve at a task after being provided with a number of demonstrations -- is seen as one of the main contributors to their success. In the present paper, we demonstrate that the in-context learning abilities of large language models can be recursively improved via in-context learning itself. We coin this phenomenon meta-in-context learning. Looking at two idealized domains, a one-dimensional regression task and a two-armed bandit task, we show that meta-in-context learning adaptively reshapes a large language model's priors over expected tasks. Furthermore, we find that meta-in-context learning modifies the in-context learning strategies of such models. Finally, we extend our approach to a benchmark of real-world regression problems where we observe competitive performance to traditional learning algorithms. Taken together, our work improves our understanding of in-context learning and paves the way toward adapting large language models to the environment they are applied purely through meta-in-context learning rather than traditional finetuning.


Meta-Learned Models of Cognition

arXiv.org Artificial Intelligence

Meta-learning is a framework for learning learning algorithms through repeated interactions with an environment as opposed to designing them by hand. In recent years, this framework has established itself as a promising tool for building models of human cognition. Yet, a coherent research program around meta-learned models of cognition is still missing. The purpose of this article is to synthesize previous work in this field and establish such a research program. We rely on three key pillars to accomplish this goal. We first point out that meta-learning can be used to construct Bayes-optimal learning algorithms. This result not only implies that any behavioral phenomenon that can be explained by a Bayesian model can also be explained by a meta-learned model but also allows us to draw strong connections to the rational analysis of cognition. We then discuss several advantages of the meta-learning framework over traditional Bayesian methods. In particular, we argue that meta-learning can be applied to situations where Bayesian inference is impossible and that it enables us to make rational models of cognition more realistic, either by incorporating limited computational resources or neuroscientific knowledge. Finally, we reexamine prior studies from psychology and neuroscience that have applied meta-learning and put them into the context of these new insights. In summary, our work highlights that meta-learning considerably extends the scope of rational analysis and thereby of cognitive theories more generally.


DiscoGen: Learning to Discover Gene Regulatory Networks

arXiv.org Artificial Intelligence

Accurately inferring Gene Regulatory Networks (GRNs) is a critical and challenging task in biology. GRNs model the activatory and inhibitory interactions between genes and are inherently causal in nature. To accurately identify GRNs, perturbational data is required. However, most GRN discovery methods only operate on observational data. Recent advances in neural network-based causal discovery methods have significantly improved causal discovery, including handling interventional data, improvements in performance and scalability. However, applying state-of-the-art (SOTA) causal discovery methods in biology poses challenges, such as noisy data and a large number of samples. Thus, adapting the causal discovery methods is necessary to handle these challenges. In this paper, we introduce DiscoGen, a neural network-based GRN discovery method that can denoise gene expression measurements and handle interventional data. We demonstrate that our model outperforms SOTA neural network-based causal discovery methods.


Toward Next-Generation Artificial Intelligence: Catalyzing the NeuroAI Revolution

arXiv.org Artificial Intelligence

This implies that the bulk of the work in developing general AI can be achieved by building systems that match the perceptual and motor abilities of animals and that the subsequent step to human-level intelligence would be considerably smaller. This is good news because progress on the first goal can rely on the favored subjects of neuroscience research - rats, mice, and non-human primates - for which extensive and rapidly expanding behavioral and neural datasets can guide the way. Thus, we believe that the NeuroAI path will lead to necessary advances if we figure out the core capabilities that all animals possess in embodied sensorimotor interaction with the world. NeuroAI Grand Challenge: The Embodied Turing Test In 1950, Alan Turing proposed the "imitation game" as a test of a machine's ability to exhibit intelligent behavior indistinguishable from that of a human


Human-centered mechanism design with Democratic AI

arXiv.org Artificial Intelligence

Building artificial intelligence (AI) that aligns with human values is an unsolved problem. Here, we developed a human-in-the-loop research pipeline called Democratic AI, in which reinforcement learning is used to design a social mechanism that humans prefer by majority. A large group of humans played an online investment game that involved deciding whether to keep a monetary endowment or to share it with others for collective benefit. Shared revenue was returned to players under two different redistribution mechanisms, one designed by the AI and the other by humans. The AI discovered a mechanism that redressed initial wealth imbalance, sanctioned free riders, and successfully won the majority vote. By optimizing for human preferences, Democratic AI may be a promising method for value-aligned policy innovation.


Alchemy: A structured task distribution for meta-reinforcement learning

arXiv.org Artificial Intelligence

There has been rapidly growing interest in meta-learning as a method for increasing the flexibility and sample efficiency of reinforcement learning. One problem in this area of research, however, has been a scarcity of adequate benchmark tasks. In general, the structure underlying past benchmarks has either been too simple to be inherently interesting, or too ill-defined to support principled analysis. In the present work, we introduce a new benchmark for meta-RL research, which combines structural richness with structural transparency. Alchemy is a 3D video game, implemented in Unity, which involves a latent causal structure that is resampled procedurally from episode to episode, affording structure learning, online inference, hypothesis testing and action sequencing based on abstract domain knowledge. We evaluate a pair of powerful RL agents on Alchemy and present an in-depth analysis of one of these agents. Results clearly indicate a frank and specific failure of meta-learning, providing validation for Alchemy as a challenging benchmark for meta-RL. Concurrent with this report, we are releasing Alchemy as public resource, together with a suite of analysis tools and sample agent trajectories.


Deep Reinforcement Learning and its Neuroscientific Implications

arXiv.org Artificial Intelligence

The emergence of powerful artificial intelligence is defining new research directions in neuroscience. To date, this research has focused largely on deep neural networks trained using supervised learning, in tasks such as image classification. However, there is another area of recent AI work which has so far received less attention from neuroscientists, but which may have profound neuroscientific implications: deep reinforcement learning. Deep RL offers a comprehensive framework for studying the interplay among learning, representation and decision-making, offering to the brain sciences a new set of research tools and a wide range of novel hypotheses. In the present review, we provide a high-level introduction to deep RL, discuss some of its initial applications to neuroscience, and survey its wider implications for research on brain and behavior, concluding with a list of opportunities for next-stage research.


Emergent Systematic Generalization in a Situated Agent

arXiv.org Artificial Intelligence

The question of whether deep neural networks are good at generalising beyond their immediate training experience is of critical importance for learning-based approaches to AI. Here, we demonstrate strong emergent systematic generalisation in a neural network agent and isolate the factors that support this ability. In environments ranging from a grid-world to a rich interactive 3D Unity room, we show that an agent can correctly exploit the compositional nature of a symbolic language to interpret never-seen-before instructions. We observe this capacity not only when instructions refer to object properties (colors and shapes) but also verb-like motor skills (lifting and putting) and abstract modifying operations (negation). We identify three factors that can contribute to this facility for systematic generalisation: (a) the number of object/word experiences in the training set; (b) the invariances afforded by a first-person, egocentric perspective; and (c) the variety of visual input experienced by an agent that perceives the world actively over time. Thus, while neural nets trained in idealised or reduced situations may fail to exhibit a compositional or systematic understanding of their experience, this competence can readily emerge when, like human learners, they have access to many examples of richly varying, multi-modal observations as they learn.


Meta-learning of Sequential Strategies

arXiv.org Machine Learning

In this report we review memory-based meta-learning as a tool for building sample-efficient strategies that learn from past experience to adapt to any task within a target class. Our goal is to equip the reader with the conceptual foundations of this tool for building new, scalable agents that operate on broad domains. To do so, we present basic algorithmic templates for building near-optimal predictors and reinforcement learners which behave as if they had a probabilistic model that allowed them to efficiently exploit task structure. Furthermore, we recast memory-based meta-learning within a Bayesian framework, showing that the meta-learned strategies are near-optimal because they amortize Bayes-filtered data, where the adaptation is implemented in the memory dynamics as a state-machine of sufficient statistics. Essentially, memory-based meta-learning translates the hard problem of probabilistic sequential inference into a regression problem.


Is coding a relevant metaphor for building AI? A commentary on "Is coding a relevant metaphor for the brain?", by Romain Brette

arXiv.org Artificial Intelligence

Is coding a relevant metaphor for building AI? A commentary on "Is coding a relevant metaphor for the brain?", by Romain Brette Abstract Brette contends that the neural coding metaphor is an invalid basis for theories of what the brain does (Brette, 2019). Here, we argue that it is an insufficient guide for building an artificial intelligence (AI) that learns to accomplish short-and long-term goals in a complex, changing environment. The goal of neuroscience is to explain how the brain enables intelligent behaviour, while the goal of agent-based AI is to build agents that behave intelligently. Neuroscience, Brette attests, has suffered from an exaggerated (and technically inaccurate) concern for the codes transmitted by particular parts of the brain.