Collaborating Authors

Botvinick, Matthew

The Variational Bandwidth Bottleneck: Stochastic Evaluation on an Information Budget Machine Learning

In many applications, it is desirable to extract only the relevant information from complex input data, which involves making a decision about which input features are relevant. The information bottleneck method formalizes this as an information-theoretic optimization problem by maintaining an optimal tradeoff between compression (throwing away irrelevant input information), and predicting the target. In many problem settings, including the reinforcement learning problems we consider in this work, we might prefer to compress only part of the input. This is typically the case when we have a standard conditioning input, such as a state observation, and a "privileged" input, which might correspond to the goal of a task, the output of a costly planning algorithm, or communication with another agent. In such cases, we might prefer to compress the privileged input, either to achieve better generalization (e.g., with respect to goals) or to minimize access to costly information (e.g., in the case of communication). Practical implementations of the information bottleneck based on variational inference require access to the privileged input in order to compute the bottleneck variable, so although they perform compression, this compression operation itself needs unrestricted, lossless access. In this work, we propose the variational bandwidth bottleneck, which decides for each example on the estimated value of the privileged information before seeing it, i.e., only based on the standard input, and then accordingly chooses stochastically, whether to access the privileged input or not. We formulate a tractable approximation to this framework and demonstrate in a series of reinforcement learning experiments that it can improve generalization and reduce access to computationally costly information.

Goal-directed decision making in prefrontal cortex: a computational framework

Neural Information Processing Systems

Research in animal learning and behavioral neuroscience has distinguished between two forms of action control: a habit-based form, which relies on stored action values, and a goal-directed form, which forecasts and compares action outcomes based on a model of the environment. While habit-based control has been the subject of extensive computational research, the computational principles underlying goal-directed control in animals have so far received less attention. In the present paper, we advance a computational framework for goal-directed control in animals and humans. We take three empirically motivated points as founding premises: (1) Neurons in dorsolateral prefrontal cortex represent action policies, (2) Neurons in orbitofrontal cortex represent rewards, and (3) Neural computation, across domains, can be appropriately understood as performing structured probabilistic inference. On a purely computational level, the resulting account relates closely to previous work using Bayesian inference to solve Markov decision problems, but extends this work by introducing a new algorithm, which provably converges on optimal plans.

A systematic approach to extracting semantic information from functional MRI data

Neural Information Processing Systems

This paper introduces a novel classification method for functional magnetic resonance imaging datasets with tens of classes. The method is designed to make predictions using information from as many brain locations as possible, instead of resorting to feature selection, and does this by decomposing the pattern of brain activation into differently informative sub-regions. We provide results over a complex semantic processing dataset that show that the method is competitive with state-of-the-art feature selection and also suggest how the method may be used to perform group or exploratory analyses of complex class structure. Papers published at the Neural Information Processing Systems Conference.

Design Principles of the Hippocampal Cognitive Map

Neural Information Processing Systems

Hippocampal place fields have been shown to reflect behaviorally relevant aspects of space. For instance, place fields tend to be skewed along commonly traveled directions, they cluster around rewarded locations, and they are constrained by the geometric structure of the environment. We hypothesize a set of design principles for the hippocampal cognitive map that explain how place fields represent space in a way that facilitates navigation and reinforcement learning. In particular, we suggest that place fields encode not just information about the current location, but also predictions about future locations under the current transition distribution. Under this model, a variety of place field phenomena arise naturally from the structure of rewards, barriers, and directional biases as reflected in the transition policy.

MEMO: A Deep Network for Flexible Combination of Episodic Memories Artificial Intelligence

Recent research developing neural network architectures with external memory have often used the benchmark bAbI question and answering dataset which provides a challenging number of tasks requiring reasoning. Here we employed a classic associative inference task from the memory-based reasoning neuroscience literature in order to more carefully probe the reasoning capacity of existing memory-augmented architectures. This task is thought to capture the essence of reasoning -- the appreciation of distant relationships among elements distributed across multiple facts or memories. Surprisingly, we found that current architectures struggle to reason over long distance associations. Similar results were obtained on a more complex task involving finding the shortest path between nodes in a path. We therefore developed MEMO, an architecture endowed with the capacity to reason over longer distances. This was accomplished with the addition of two novel components. First, it introduces a separation between memories (facts) stored in external memory and the items that comprise these facts in external memory. Second, it makes use of an adaptive retrieval mechanism, allowing a variable number of "memory hops" before the answer is produced. MEMO is capable of solving our novel reasoning tasks, as well as match state of the art results in bAbI.

Emergent Systematic Generalization in a Situated Agent Artificial Intelligence

The question of whether deep neural networks are good at generalising beyond their immediate training experience is of critical importance for learning-based approaches to AI. Here, we demonstrate strong emergent systematic generalisation in a neural network agent and isolate the factors that support this ability. In environments ranging from a grid-world to a rich interactive 3D Unity room, we show that an agent can correctly exploit the compositional nature of a symbolic language to interpret never-seen-before instructions. We observe this capacity not only when instructions refer to object properties (colors and shapes) but also verb-like motor skills (lifting and putting) and abstract modifying operations (negation). We identify three factors that can contribute to this facility for systematic generalisation: (a) the number of object/word experiences in the training set; (b) the invariances afforded by a first-person, egocentric perspective; and (c) the variety of visual input experienced by an agent that perceives the world actively over time. Thus, while neural nets trained in idealised or reduced situations may fail to exhibit a compositional or systematic understanding of their experience, this competence can readily emerge when, like human learners, they have access to many examples of richly varying, multi-modal observations as they learn.

Meta-learning of Sequential Strategies Machine Learning

In this report we review memory-based meta-learning as a tool for building sample-efficient strategies that learn from past experience to adapt to any task within a target class. Our goal is to equip the reader with the conceptual foundations of this tool for building new, scalable agents that operate on broad domains. To do so, we present basic algorithmic templates for building near-optimal predictors and reinforcement learners which behave as if they had a probabilistic model that allowed them to efficiently exploit task structure. Furthermore, we recast memory-based meta-learning within a Bayesian framework, showing that the meta-learned strategies are near-optimal because they amortize Bayes-filtered data, where the adaptation is implemented in the memory dynamics as a state-machine of sufficient statistics. Essentially, memory-based meta-learning translates the hard problem of probabilistic sequential inference into a regression problem.

Is coding a relevant metaphor for building AI? A commentary on "Is coding a relevant metaphor for the brain?", by Romain Brette Artificial Intelligence

Is coding a relevant metaphor for building AI? A commentary on "Is coding a relevant metaphor for the brain?", by Romain Brette Abstract Brette contends that the neural coding metaphor is an invalid basis for theories of what the brain does (Brette, 2019). Here, we argue that it is an insufficient guide for building an artificial intelligence (AI) that learns to accomplish short-and long-term goals in a complex, changing environment. The goal of neuroscience is to explain how the brain enables intelligent behaviour, while the goal of agent-based AI is to build agents that behave intelligently. Neuroscience, Brette attests, has suffered from an exaggerated (and technically inaccurate) concern for the codes transmitted by particular parts of the brain.

Multi-Object Representation Learning with Iterative Variational Inference Machine Learning

Human perception is structured around objects which form the basis for our higher-level cognition and impressive systematic generalization abilities. Yet most work on representation learning focuses on feature learning without even considering multiple objects, or treats segmentation as an (often supervised) preprocessing step. Instead, we argue for the importance of learning to segment and represent objects jointly. We demonstrate that, starting from the simple assumption that a scene is composed of multiple entities, it is possible to learn to segment images into interpretable objects with disentangled representations. Our method learns -- without supervision -- to inpaint occluded parts, and extrapolates to scenes with more objects and to unseen objects with novel feature combinations. We also show that, due to the use of iterative variational inference, our system is able to learn multi-modal posteriors for ambiguous inputs and extends naturally to sequences.

InfoBot: Transfer and Exploration via the Information Bottleneck Machine Learning

A central challenge in reinforcement learning is discovering effective policies for tasks where rewards are sparsely distributed. We postulate that in the absence of useful reward signals, an effective exploration strategy should seek out {\it decision states}. These states lie at critical junctions in the state space from where the agent can transition to new, potentially unexplored regions. We propose to learn about decision states from prior experience. By training a goal-conditioned policy with an information bottleneck, we can identify decision states by examining where the model actually leverages the goal state. We find that this simple mechanism effectively identifies decision states, even in partially observed settings. In effect, the model learns the sensory cues that correlate with potential subgoals. In new environments, this model can then identify novel subgoals for further exploration, guiding the agent through a sequence of potential decision states and through new regions of the state space.