Goto

Collaborating Authors

 Boschini, Matteo


Semantic Residual Prompts for Continual Learning

arXiv.org Artificial Intelligence

Prompt-tuning methods for Continual Learning (CL) freeze a large pre-trained model and focus training on a few parameter vectors termed prompts. Most of these methods organize these vectors in a pool of key-value pairs, and use the input image as query to retrieve the prompts (values). However, as keys are learned while tasks progress, the prompting selection strategy is itself subject to catastrophic forgetting, an issue often overlooked by existing approaches. For instance, prompts introduced to accommodate new tasks might end up interfering with previously learned prompts. To make the selection strategy more stable, we ask a foundational model (CLIP) to select our prompt within a two-level adaptation mechanism. Specifically, the first level leverages standard textual prompts for the CLIP textual encoder, leading to stable class prototypes. The second level, instead, uses these prototypes along with the query image as keys to index a second pool. The retrieved prompts serve to adapt a pre-trained ViT, granting plasticity. In doing so, we also propose a novel residual mechanism to transfer CLIP semantics to the ViT layers. Through extensive analysis on established CL benchmarks, we show that our method significantly outperforms both state-of-the-art CL approaches and the zero-shot CLIP test. Notably, our findings hold true even for datasets with a substantial domain gap w.r.t. the pre-training knowledge of the backbone model, as showcased by experiments on satellite imagery and medical datasets.


Latent Spectral Regularization for Continual Learning

arXiv.org Artificial Intelligence

While biological intelligence grows organically as new knowledge is gathered throughout life, Artificial Neural Networks forget catastrophically whenever they face a changing training data distribution. Rehearsal-based Continual Learning (CL) approaches have been established as a versatile and reliable solution to overcome this limitation; however, sudden input disruptions and memory constraints are known to alter the consistency of their predictions. We study this phenomenon by investigating the geometric characteristics of the learner's latent space and find that replayed data points of different classes increasingly mix up, interfering with classification. Hence, we propose a geometric regularizer that enforces weak requirements on the Laplacian spectrum of the latent space, promoting a partitioning behavior. We show that our proposal, called Continual Spectral Regularizer (CaSpeR), can be easily combined with any rehearsal-based CL approach and improves the performance of SOTA methods on standard benchmarks. Finally, we conduct additional analysis to provide insights into CaSpeR's effects and applicability.


On the Effectiveness of Equivariant Regularization for Robust Online Continual Learning

arXiv.org Artificial Intelligence

Humans can learn incrementally, whereas neural networks forget previously acquired information catastrophically. Continual Learning (CL) approaches seek to bridge this gap by facilitating the transfer of knowledge to both previous tasks (backward transfer) and future ones (forward transfer) during training. Recent research has shown that self-supervision can produce versatile models that can generalize well to diverse downstream tasks. However, contrastive self-supervised learning (CSSL), a popular self-supervision technique, has limited effectiveness in online CL (OCL). OCL only permits one iteration of the input dataset, and CSSL's low sample efficiency hinders its use on the input data-stream. In this work, we propose Continual Learning via Equivariant Regularization (CLER), an OCL approach that leverages equivariant tasks for self-supervision, avoiding CSSL's limitations. Our method represents the first attempt at combining equivariant knowledge with CL and can be easily integrated with existing OCL methods. Extensive ablations shed light on how equivariant pretext tasks affect the network's information flow and its impact on CL dynamics.


Transfer without Forgetting

arXiv.org Artificial Intelligence

This work investigates the entanglement between Continual Learning (CL) and Transfer Learning (TL). In particular, we shed light on the widespread application of network pretraining, highlighting that it is itself subject to catastrophic forgetting. Unfortunately, this issue leads to the under-exploitation of knowledge transfer during later tasks. On this ground, we propose Transfer without Forgetting (TwF), a hybrid approach building upon a fixed pretrained sibling network, which continuously propagates the knowledge inherent in the source domain through a layer-wise loss term. Our experiments indicate that TwF steadily outperforms other CL methods across a variety of settings, averaging a 4.81% gain in Class-Incremental accuracy over a variety of datasets and different buffer sizes. Our code is available at https://github.com/mbosc/twf.


Class-Incremental Continual Learning into the eXtended DER-verse

arXiv.org Machine Learning

The staple of human intelligence is the capability of acquiring knowledge in a continuous fashion. In stark contrast, Deep Networks forget catastrophically and, for this reason, the sub-field of Class-Incremental Continual Learning fosters methods that learn a sequence of tasks incrementally, blending sequentially-gained knowledge into a comprehensive prediction. This work aims at assessing and overcoming the pitfalls of our previous proposal Dark Experience Replay (DER), a simple and effective approach that combines rehearsal and Knowledge Distillation. Inspired by the way our minds constantly rewrite past recollections and set expectations for the future, we endow our model with the abilities to i) revise its replay memory to welcome novel information regarding past data ii) pave the way for learning yet unseen classes. We show that the application of these strategies leads to remarkable improvements; indeed, the resulting method - termed eXtended-DER (X-DER) - outperforms the state of the art on both standard benchmarks (such as CIFAR-100 and miniImagenet) and a novel one here introduced. To gain a better understanding, we further provide extensive ablation studies that corroborate and extend the findings of our previous research (e.g. the value of Knowledge Distillation and flatter minima in continual learning setups).


Weakly Supervised Continual Learning

arXiv.org Machine Learning

Continual Learning (CL) investigates how to train Deep Networks on a stream of tasks without incurring catastrophic forgetting. CL settings proposed in the literature assume that every incoming example is paired with ground-truth annotations. However, this clashes with many real-world applications: gathering labeled data, which is in itself tedious and expensive, becomes indeed infeasible when data flow as a stream and must be consumed in real-time. This work explores Weakly Supervised Continual Learning (WSCL): here, only a small fraction of labeled input examples are shown to the learner. We assess how current CL methods (e.g.: EWC, LwF, iCaRL, ER, GDumb, DER) perform in this novel and challenging scenario, in which overfitting entangles forgetting. Subsequently, we design two novel WSCL methods which exploit metric learning and consistency regularization to leverage unsupervised data while learning. In doing so, we show that not only our proposals exhibit higher flexibility when supervised information is scarce, but also that less than 25% labels can be enough to reach or even outperform SOTA methods trained under full supervision.


Dark Experience for General Continual Learning: a Strong, Simple Baseline

arXiv.org Machine Learning

Continual Learning has inspired a plethora of approaches and evaluation settings; however, the majority of them overlooks the properties of a practical scenario, where the data stream cannot be shaped as a sequence of tasks and offline training is not viable. We work towards General Continual Learning (GCL), where task boundaries blur and the domain and class distributions shift either gradually or suddenly. We address it through mixing rehearsal with knowledge distillation and regularization; our simple baseline, Dark Experience Replay, matches the network's logits sampled throughout the optimization trajectory, thus promoting consistency with its past. By conducting an extensive analysis on both standard benchmarks and a novel GCL evaluation setting (MNIST-360), we show that such a seemingly simple baseline outperforms consolidated approaches and leverages limited resources. We further explore the generalization capabilities of our objective, showing its regularization being beneficial beyond mere performance.


Rethinking Experience Replay: a Bag of Tricks for Continual Learning

arXiv.org Machine Learning

In Continual Learning, a Neural Network is trained on a stream of data whose distribution shifts over time. Under these assumptions, it is especially challenging to improve on classes appearing later in the stream while remaining accurate on previous ones. This is due to the infamous problem of catastrophic forgetting, which causes a quick performance degradation when the classifier focuses on learning new categories. Recent literature proposed various approaches to tackle this issue, often resorting to very sophisticated techniques. In this work, we show that naive rehearsal can be patched to achieve similar performance. We point out some shortcomings that restrain Experience Replay (ER) and propose five tricks to mitigate them. Experiments show that ER, thus enhanced, displays an accuracy gain of 51.2 and 26.9 percentage points on the CIFAR-10 and CIFAR-100 datasets respectively (memory buffer size 1000). As a result, it surpasses current state-of-the-art rehearsal-based methods.