Bornstein, Marco
Auction-Based Regulation for Artificial Intelligence
Bornstein, Marco, Che, Zora, Julapalli, Suhas, Mohamed, Abdirisak, Bedi, Amrit Singh, Huang, Furong
In an era of "moving fast and breaking things", regulators have moved slowly to pick up the safety, bias, and legal pieces left in the wake of broken Artificial Intelligence (AI) deployment. Since AI models, such as large language models, are able to push misinformation and stoke division within our society, it is imperative for regulators to employ a framework that mitigates these dangers and ensures user safety. While there is much-warranted discussion about how to address the safety, bias, and legal woes of state-of-the-art AI models, the number of rigorous and realistic mathematical frameworks to regulate AI safety is lacking. We take on this challenge, proposing an auction-based regulatory mechanism that provably incentivizes model-building agents (i) to deploy safer models and (ii) to participate in the regulation process. We provably guarantee, via derived Nash Equilibria, that each participating agent's best strategy is to submit a model safer than a prescribed minimum-safety threshold. Empirical results show that our regulatory auction boosts safety and participation rates by 20% and 15% respectively, outperforming simple regulatory frameworks that merely enforce minimum safety standards.
FACT or Fiction: Can Truthful Mechanisms Eliminate Federated Free Riding?
Bornstein, Marco, Bedi, Amrit Singh, Mohamed, Abdirisak, Huang, Furong
Standard federated learning (FL) approaches are vulnerable to the free-rider dilemma: participating agents can contribute little to nothing yet receive a well-trained aggregated model. While prior mechanisms attempt to solve the free-rider dilemma, none have addressed the issue of truthfulness. In practice, adversarial agents can provide false information to the server in order to cheat its way out of contributing to federated training. In an effort to make free-riding-averse federated mechanisms truthful, and consequently less prone to breaking down in practice, we propose FACT. FACT is the first federated mechanism that: (1) eliminates federated free riding by using a penalty system, (2) ensures agents provide truthful information by creating a competitive environment, and (3) encourages agent participation by offering better performance than training alone. Empirically, FACT avoids free-riding when agents are untruthful, and reduces agent loss by over 4x.
RealFM: A Realistic Mechanism to Incentivize Federated Participation and Contribution
Bornstein, Marco, Bedi, Amrit Singh, Sahu, Anit Kumar, Khan, Furqan, Huang, Furong
Edge device participation in federating learning (FL) is typically studied under the lens of device-server communication (e.g., device dropout) and assumes an undying desire from edge devices to participate in FL. As a result, current FL frameworks are flawed when implemented in realistic settings, with many encountering the free-rider dilemma. In a step to push FL towards realistic settings, we propose RealFM: the first federated mechanism that (1) realistically models device utility, (2) incentivizes data contribution and device participation, (3) provably removes the free-rider dilemma, and (4) relaxes assumptions on data homogeneity, data sharing, and monetary reward payments. Compared to previous FL mechanisms, RealFM allows for a non-linear relationship between model accuracy and utility, which improves the utility gained by the server and participating devices. On real-world data, RealFM improves device and server utility, as well as data contribution, by over 3 and 4 magnitudes respectively compared to baselines.
Comfetch: Federated Learning of Large Networks on Constrained Clients via Sketching
Rabbani, Tahseen, Feng, Brandon, Bornstein, Marco, Sang, Kyle Rui, Yang, Yifan, Rajkumar, Arjun, Varshney, Amitabh, Huang, Furong
Federated learning (FL) is a popular paradigm for private and collaborative model training on the edge. In centralized FL, the parameters of a global architecture (such as a deep neural network) are maintained and distributed by a central server/controller to clients who transmit model updates (gradients) back to the server based on local optimization. While many efforts have focused on reducing the communication complexity of gradient transmission, the vast majority of compression-based algorithms assume that each participating client is able to download and train the current and full set of parameters, which may not be a practical assumption depending on the resource constraints of smaller clients such as mobile devices. In this work, we propose a simple yet effective novel algorithm, Comfetch, which allows clients to train large networks using reduced representations of the global architecture via the count sketch, which reduces local computational and memory costs along with bi-directional communication complexity. We provide a nonconvex convergence guarantee and experimentally demonstrate that it is possible to learn large models, such as a deep convolutional network, through federated training on their sketched counterparts. The resulting global models exhibit competitive test accuracy over CIFAR10/100 classification when compared against un-compressed model training.
Large-Scale Distributed Learning via Private On-Device Locality-Sensitive Hashing
Rabbani, Tahseen, Bornstein, Marco, Huang, Furong
Locality-sensitive hashing (LSH) based frameworks have been used efficiently to select weight vectors in a dense hidden layer with high cosine similarity to an input, enabling dynamic pruning. While this type of scheme has been shown to improve computational training efficiency, existing algorithms require repeated randomized projection of the full layer weight, which is impractical for computational- and memory-constrained devices. In a distributed setting, deferring LSH analysis to a centralized host is (i) slow if the device cluster is large and (ii) requires access to input data which is forbidden in a federated context. Using a new family of hash functions, we develop one of the first private, personalized, and memory-efficient on-device LSH frameworks. Our framework enables privacy and personalization by allowing each device to generate hash tables, without the help of a central host, using device-specific hashing hyper-parameters (e.g. number of hash tables or hash length). Hash tables are generated with a compressed set of the full weights, and can be serially generated and discarded if the process is memory-intensive. This allows devices to avoid maintaining (i) the fully-sized model and (ii) large amounts of hash tables in local memory for LSH analysis. We prove several statistical and sensitivity properties of our hash functions, and experimentally demonstrate that our framework is competitive in training large-scale recommender networks compared to other LSH frameworks which assume unrestricted on-device capacity.