Bohez, Steven
Gemini Robotics: Bringing AI into the Physical World
Gemini Robotics Team, null, Abeyruwan, Saminda, Ainslie, Joshua, Alayrac, Jean-Baptiste, Arenas, Montserrat Gonzalez, Armstrong, Travis, Balakrishna, Ashwin, Baruch, Robert, Bauza, Maria, Blokzijl, Michiel, Bohez, Steven, Bousmalis, Konstantinos, Brohan, Anthony, Buschmann, Thomas, Byravan, Arunkumar, Cabi, Serkan, Caluwaerts, Ken, Casarini, Federico, Chang, Oscar, Chen, Jose Enrique, Chen, Xi, Chiang, Hao-Tien Lewis, Choromanski, Krzysztof, D'Ambrosio, David, Dasari, Sudeep, Davchev, Todor, Devin, Coline, Di Palo, Norman, Ding, Tianli, Dostmohamed, Adil, Driess, Danny, Du, Yilun, Dwibedi, Debidatta, Elabd, Michael, Fantacci, Claudio, Fong, Cody, Frey, Erik, Fu, Chuyuan, Giustina, Marissa, Gopalakrishnan, Keerthana, Graesser, Laura, Hasenclever, Leonard, Heess, Nicolas, Hernaez, Brandon, Herzog, Alexander, Hofer, R. Alex, Humplik, Jan, Iscen, Atil, Jacob, Mithun George, Jain, Deepali, Julian, Ryan, Kalashnikov, Dmitry, Karagozler, M. Emre, Karp, Stefani, Kew, Chase, Kirkland, Jerad, Kirmani, Sean, Kuang, Yuheng, Lampe, Thomas, Laurens, Antoine, Leal, Isabel, Lee, Alex X., Lee, Tsang-Wei Edward, Liang, Jacky, Lin, Yixin, Maddineni, Sharath, Majumdar, Anirudha, Michaely, Assaf Hurwitz, Moreno, Robert, Neunert, Michael, Nori, Francesco, Parada, Carolina, Parisotto, Emilio, Pastor, Peter, Pooley, Acorn, Rao, Kanishka, Reymann, Krista, Sadigh, Dorsa, Saliceti, Stefano, Sanketi, Pannag, Sermanet, Pierre, Shah, Dhruv, Sharma, Mohit, Shea, Kathryn, Shu, Charles, Sindhwani, Vikas, Singh, Sumeet, Soricut, Radu, Springenberg, Jost Tobias, Sterneck, Rachel, Surdulescu, Razvan, Tan, Jie, Tompson, Jonathan, Vanhoucke, Vincent, Varley, Jake, Vesom, Grace, Vezzani, Giulia, Vinyals, Oriol, Wahid, Ayzaan, Welker, Stefan, Wohlhart, Paul, Xia, Fei, Xiao, Ted, Xie, Annie, Xie, Jinyu, Xu, Peng, Xu, Sichun, Xu, Ying, Xu, Zhuo, Yang, Yuxiang, Yao, Rui, Yaroshenko, Sergey, Yu, Wenhao, Yuan, Wentao, Zhang, Jingwei, Zhang, Tingnan, Zhou, Allan, Zhou, Yuxiang
Recent advancements in large multimodal models have led to the emergence of remarkable generalist capabilities in digital domains, yet their translation to physical agents such as robots remains a significant challenge. This report introduces a new family of AI models purposefully designed for robotics and built upon the foundation of Gemini 2.0. We present Gemini Robotics, an advanced Vision-Language-Action (VLA) generalist model capable of directly controlling robots. Gemini Robotics executes smooth and reactive movements to tackle a wide range of complex manipulation tasks while also being robust to variations in object types and positions, handling unseen environments as well as following diverse, open vocabulary instructions. We show that with additional fine-tuning, Gemini Robotics can be specialized to new capabilities including solving long-horizon, highly dexterous tasks, learning new short-horizon tasks from as few as 100 demonstrations and adapting to completely novel robot embodiments. This is made possible because Gemini Robotics builds on top of the Gemini Robotics-ER model, the second model we introduce in this work. Gemini Robotics-ER (Embodied Reasoning) extends Gemini's multimodal reasoning capabilities into the physical world, with enhanced spatial and temporal understanding. This enables capabilities relevant to robotics including object detection, pointing, trajectory and grasp prediction, as well as multi-view correspondence and 3D bounding box predictions. We show how this novel combination can support a variety of robotics applications. We also discuss and address important safety considerations related to this new class of robotics foundation models. The Gemini Robotics family marks a substantial step towards developing general-purpose robots that realizes AI's potential in the physical world.
Proc4Gem: Foundation models for physical agency through procedural generation
Lin, Yixin, Humplik, Jan, Huang, Sandy H., Hasenclever, Leonard, Romano, Francesco, Saliceti, Stefano, Zheng, Daniel, Chen, Jose Enrique, Barros, Catarina, Collister, Adrian, Young, Matt, Dostmohamed, Adil, Moran, Ben, Caluwaerts, Ken, Giustina, Marissa, Moore, Joss, Connell, Kieran, Nori, Francesco, Heess, Nicolas, Bohez, Steven, Byravan, Arunkumar
In robot learning, it is common to either ignore the environment semantics, focusing on tasks like whole-body control which only require reasoning about robot-environment contacts, or conversely to ignore contact dynamics, focusing on grounding high-level movement in vision and language. In this work, we show that advances in generative modeling, photorealistic rendering, and procedural generation allow us to tackle tasks requiring both. By generating contact-rich trajectories with accurate physics in semantically-diverse simulations, we can distill behaviors into large multimodal models that directly transfer to the real world: a system we call Proc4Gem. Specifically, we show that a foundation model, Gemini, fine-tuned on only simulation data, can be instructed in language to control a quadruped robot to push an object with its body to unseen targets in unseen real-world environments. Our real-world results demonstrate the promise of using simulation to imbue foundation models with physical agency. Videos can be found at our website: https://sites.google.com/view/proc4gem
Barkour: Benchmarking Animal-level Agility with Quadruped Robots
Caluwaerts, Ken, Iscen, Atil, Kew, J. Chase, Yu, Wenhao, Zhang, Tingnan, Freeman, Daniel, Lee, Kuang-Huei, Lee, Lisa, Saliceti, Stefano, Zhuang, Vincent, Batchelor, Nathan, Bohez, Steven, Casarini, Federico, Chen, Jose Enrique, Cortes, Omar, Coumans, Erwin, Dostmohamed, Adil, Dulac-Arnold, Gabriel, Escontrela, Alejandro, Frey, Erik, Hafner, Roland, Jain, Deepali, Jyenis, Bauyrjan, Kuang, Yuheng, Lee, Edward, Luu, Linda, Nachum, Ofir, Oslund, Ken, Powell, Jason, Reyes, Diego, Romano, Francesco, Sadeghi, Feresteh, Sloat, Ron, Tabanpour, Baruch, Zheng, Daniel, Neunert, Michael, Hadsell, Raia, Heess, Nicolas, Nori, Francesco, Seto, Jeff, Parada, Carolina, Sindhwani, Vikas, Vanhoucke, Vincent, Tan, Jie
Abstract--Animals have evolved various agile locomotion strategies, such as sprinting, leaping, and jumping. There is a growing interest in developing legged robots that move like their biological counterparts and show various agile skills to navigate complex environments quickly. Despite the interest, the field lacks systematic benchmarks to measure the performance of control policies and hardware in agility. We introduce the Barkour benchmark, an obstacle course to quantify agility for legged robots. Inspired by dog agility competitions, it consists of diverse obstacles and a time based scoring mechanism. This encourages researchers to develop controllers that not only move fast, but do so in a controllable and versatile way. To set strong baselines, we present two methods for tackling the benchmark. In the first approach, we train specialist locomotion skills using on-policy reinforcement learning methods and combine them with a highlevel navigation controller. In the second approach, we distill the specialist skills into a Transformer-based generalist locomotion policy, named Locomotion-Transformer, that can handle various terrains and adjust the robot's gait based on the perceived There has been a proliferation of legged robot development inspired by animal mobility. An important research question in this field is how to develop a controller that enables legged robots to exhibit animal-level agility while also being able to generalize environments, such as up and down stairs, through bushes, across various obstacles and terrains. Through the exploration and over unpaved roads and rocky or even sandy beaches. of both learning and traditional control-based methods, there Despite advances in robot hardware and control, a major has been significant progress in enabling robots to walk across challenge in the field is the lack of standardized and intuitive a wide range of terrains [10, 21, 20, 1, 27]. These robots are methods for evaluating the effectiveness of locomotion now capable of walking in a variety of indoor and outdoor controllers.
dm_control: Software and Tasks for Continuous Control
Tassa, Yuval, Tunyasuvunakool, Saran, Muldal, Alistair, Doron, Yotam, Trochim, Piotr, Liu, Siqi, Bohez, Steven, Merel, Josh, Erez, Tom, Lillicrap, Timothy, Heess, Nicolas
A MuJoCo wrapper provides convenient bindings to functions and data structures. The PyMJCF and Composer libraries enable procedural model manipulation and task authoring. The Control Suite is a fixed set of tasks with standardised structure, intended to serve as performance benchmarks. The Locomotion framework provides high-level abstractions and examples of locomotion tasks. A set of configurable manipulation tasks with a robot arm and snap-together bricks is also included.
Relative Entropy Regularized Policy Iteration
Abdolmaleki, Abbas, Springenberg, Jost Tobias, Degrave, Jonas, Bohez, Steven, Tassa, Yuval, Belov, Dan, Heess, Nicolas, Riedmiller, Martin
We present an off-policy actor-critic algorithm for Reinforcement Learning (RL) that combines ideas from gradient-free optimization via stochastic search with learned action-value function. The result is a simple procedure consisting of three steps: i) policy evaluation by estimating a parametric action-value function; ii) policy improvement via the estimation of a local non-parametric policy; and iii) generalization by fitting a parametric policy. Each step can be implemented in different ways, giving rise to several algorithm variants. Our algorithm draws on connections to existing literature on black-box optimization and 'RL as an inference' and it can be seen either as an extension of the Maximum a Posteriori Policy Optimisation algorithm (MPO) [Abdolmaleki et al., 2018a], or as an extension of Trust Region Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [Abdolmaleki et al., 2017b; Hansen et al., 1997] to a policy iteration scheme. Our comparison on 31 continuous control tasks from parkour suite [Heess et al., 2017], DeepMind control suite [Tassa et al., 2018] and OpenAI Gym [Brockman et al., 2016] with diverse properties, limited amount of compute and a single set of hyperparameters, demonstrate the effectiveness of our method and the state of art results. Videos, summarizing results, can be found at goo.gl/HtvJKR .
Sim-to-Real: Learning Agile Locomotion For Quadruped Robots
Tan, Jie, Zhang, Tingnan, Coumans, Erwin, Iscen, Atil, Bai, Yunfei, Hafner, Danijar, Bohez, Steven, Vanhoucke, Vincent
Designing agile locomotion for quadruped robots often requires extensive expertise and tedious manual tuning. In this paper, we present a system to automate this process by leveraging deep reinforcement learning techniques. Our system can learn quadruped locomotion from scratch using simple reward signals. In addition, users can provide an open loop reference to guide the learning process when more control over the learned gait is needed. The control policies are learned in a physics simulator and then deployed on real robots. In robotics, policies trained in simulation often do not transfer to the real world. We narrow this reality gap by improving the physics simulator and learning robust policies. We improve the simulation using system identification, developing an accurate actuator model and simulating latency. We learn robust controllers by randomizing the physical environments, adding perturbations and designing a compact observation space. We evaluate our system on two agile locomotion gaits: trotting and galloping. After learning in simulation, a quadruped robot can successfully perform both gaits in the real world.