Bischof, Horst
Efficient Motion Prediction: A Lightweight & Accurate Trajectory Prediction Model With Fast Training and Inference Speed
Prutsch, Alexander, Bischof, Horst, Possegger, Horst
For efficient and safe autonomous driving, it is essential that autonomous vehicles can predict the motion of other traffic agents. While highly accurate, current motion prediction models often impose significant challenges in terms of training resource requirements and deployment on embedded hardware. We propose a new efficient motion prediction model, which achieves highly competitive benchmark results while training only a few hours on a single GPU. Due to our lightweight architectural choices and the focus on reducing the required training resources, our model can easily be applied to custom datasets. Furthermore, its low inference latency makes it particularly suitable for deployment in autonomous applications with limited computing resources.
Into the Fog: Evaluating Multiple Object Tracking Robustness
Kirillova, Nadezda, Mirza, M. Jehanzeb, Possegger, Horst, Bischof, Horst
State-of-the-art (SOTA) trackers have shown remarkable Multiple Object Tracking (MOT) performance when trained and evaluated on current benchmarks. However, these benchmarks primarily consist of clear scenarios, overlooking adverse atmospheric conditions such as fog, haze, smoke and dust. As a result, the robustness of SOTA trackers remains underexplored. To address these limitations, we propose a pipeline for physic-based volumetric fog simulation in arbitrary real-world MOT dataset utilizing frame-by-frame monocular depth estimation and a fog formation optical model. Moreover, we enhance our simulation by rendering of both homogeneous and heterogeneous fog effects. We propose to use the dark channel prior method to estimate fog (smoke) color, which shows promising results even in night and indoor scenes. We present the leading tracking benchmark MOTChallenge (MOT17 dataset) overlaid by fog (smoke for indoor scenes) of various intensity levels and conduct a comprehensive evaluation of SOTA MOT methods, revealing their limitations under fog and fog-similar challenges.
Identifying and Extracting Pedestrian Behavior in Critical Traffic Situations
Schachner, Martin, Schneider, Bernd, Weissenbacher, Fabian, Kirillova, Nadezda, Possegger, Horst, Bischof, Horst, Klug, Corina
A better understanding of interactive pedestrian behavior in critical traffic situations is essential for the development of enhanced pedestrian safety systems. Real-world traffic observations play a decisive role in this, since they represent behavior in an unbiased way. In this work, we present an approach of how a subset of very considerable pedestrian-vehicle interactions can be derived from a camera-based observation system. For this purpose, we have examined road user trajectories automatically for establishing temporal and spatial relationships, using 110h hours of video recordings. In order to identify critical interactions, our approach combines the metric post-encroachment time with a newly introduced motion adaption metric. From more than 11,000 reconstructed pedestrian trajectories, 259 potential scenarios remained, using a post-encroachment time threshold of 2s. However, in 95% of cases, no adaptation of the pedestrian behavior was observed due to avoiding criticality. Applying the proposed motion adaption metric, only 21 critical scenarios remained. Manual investigations revealed that critical pedestrian vehicle interactions were present in 7 of those. They were further analyzed and made publicly available for developing pedestrian behavior models3. The results indicate that critical interactions in which the pedestrian perceives and reacts to the vehicle at a relatively late stage can be extracted using the proposed method.
Robust Localization of Key Fob Using Channel Impulse Response of Ultra Wide Band Sensors for Keyless Entry Systems
Kolli, Abhiram, Casamassima, Filippo, Possegger, Horst, Bischof, Horst
Using neural networks for localization of key fob within and surrounding a car as a security feature for keyless entry is fast emerging. In this paper we study: 1) the performance of pre-computed features of neural networks based UWB (ultra wide band) localization classification forming the baseline of our experiments. 2) Investigate the inherent robustness of various neural networks; therefore, we include the study of robustness of the adversarial examples without any adversarial training in this work. 3) Propose a multi-head self-supervised neural network architecture which outperforms the baseline neural networks without any adversarial training. The model's performance improved by 67% at certain ranges of adversarial magnitude for fast gradient sign method and 37% each for basic iterative method and projected gradient descent method.
GACE: Geometry Aware Confidence Enhancement for Black-Box 3D Object Detectors on LiDAR-Data
Schinagl, David, Krispel, Georg, Fruhwirth-Reisinger, Christian, Possegger, Horst, Bischof, Horst
Widely-used LiDAR-based 3D object detectors often neglect fundamental geometric information readily available from the object proposals in their confidence estimation. This is mostly due to architectural design choices, which were often adopted from the 2D image domain, where geometric context is rarely available. In 3D, however, considering the object properties and its surroundings in a holistic way is important to distinguish between true and false positive detections, e.g. occluded pedestrians in a group. To address this, we present GACE, an intuitive and highly efficient method to improve the confidence estimation of a given black-box 3D object detector. We aggregate geometric cues of detections and their spatial relationships, which enables us to properly assess their plausibility and consequently, improve the confidence estimation. This leads to consistent performance gains over a variety of state-of-the-art detectors. Across all evaluated detectors, GACE proves to be especially beneficial for the vulnerable road user classes, i.e. pedestrians and cyclists.
LaFTer: Label-Free Tuning of Zero-shot Classifier using Language and Unlabeled Image Collections
Mirza, M. Jehanzeb, Karlinsky, Leonid, Lin, Wei, Kozinski, Mateusz, Possegger, Horst, Feris, Rogerio, Bischof, Horst
Recently, large-scale pre-trained Vision and Language (VL) models have set a new state-of-the-art (SOTA) in zero-shot visual classification enabling open-vocabulary recognition of potentially unlimited set of categories defined as simple language prompts. However, despite these great advances, the performance of these zeroshot classifiers still falls short of the results of dedicated (closed category set) classifiers trained with supervised fine-tuning. In this paper we show, for the first time, how to reduce this gap without any labels and without any paired VL data, using an unlabeled image collection and a set of texts auto-generated using a Large Language Model (LLM) describing the categories of interest and effectively substituting labeled visual instances of those categories. Using our label-free approach, we are able to attain significant performance improvements over the zero-shot performance of the base VL model and other contemporary methods and baselines on a wide variety of datasets, demonstrating absolute improvement of up to 11.7% (3.8% on average) in the label-free setting. Moreover, despite our approach being label-free, we observe 1.3% average gains over leading few-shot prompting baselines that do use 5-shot supervision.
Test-time adversarial detection and robustness for localizing humans using ultra wide band channel impulse responses
Kolli, Abhiram, Mirza, Muhammad Jehanzeb, Possegger, Horst, Bischof, Horst
Keyless entry systems in cars are adopting neural networks for localizing its operators. Using test-time adversarial defences equip such systems with the ability to defend against adversarial attacks without prior training on adversarial samples. We propose a test-time adversarial example detector which detects the input adversarial example through quantifying the localized intermediate responses of a pre-trained neural network and confidence scores of an auxiliary softmax layer. Furthermore, in order to make the network robust, we extenuate the non-relevant features by non-iterative input sample clipping. Using our approach, mean performance over 15 levels of adversarial perturbations is increased by 55.33% for the fast gradient sign method (FGSM) and 6.3% for both the basic iterative method (BIM) and the projected gradient method (PGD).
Context-Sensitive Decision Forests for Object Detection
Kontschieder, Peter, Bulรฒ, Samuel R., Criminisi, Antonio, Kohli, Pushmeet, Pelillo, Marcello, Bischof, Horst
In this paper we introduce Context-Sensitive Decision Forests - A new perspective to exploit contextual information in the popular decision forest framework for the object detection problem. They are tree-structured classifiers with the ability to access intermediate prediction (here: classification and regression) information during training and inference time. This intermediate prediction is available to each sample, which allows us to develop context-based decision criteria, used for refining the prediction process. In addition, we introduce a novel split criterion which in combination with a priority based way of constructing the trees, allows more accurate regression mode selection and hence improves the current context information. In our experiments, we demonstrate improved results for the task of pedestrian detection on the challenging TUD data set when compared to state-of-the-art methods.
PCA-Pyramids for Image Compression
Bischof, Horst, Hornik, Kurt
First, we show that we can use neural networks in a pyramidal framework,yielding the so-called PCA pyramids. Then we present an image compression method based on the PCA pyramid, which is similar to the Laplace pyramid and wavelet transform. Some experimental results with real images are reported. Finally, we present a method to combine the quantization step with the learning of the PCA pyramid. 1 Introduction In the past few years, a lot of work has been done on using neural networks for image compression, d .
PCA-Pyramids for Image Compression
Bischof, Horst, Hornik, Kurt
This paper presents a new method for image compression by neural networks. First, we show that we can use neural networks in a pyramidal framework, yielding the so-called PCA pyramids. Then we present an image compression method based on the PCA pyramid, which is similar to the Laplace pyramid and wavelet transform. Some experimental results with real images are reported. Finally, we present a method to combine the quantization step with the learning of the PCA pyramid. 1 Introduction In the past few years, a lot of work has been done on using neural networks for image compression, d. e.g.