Biondi, Alessandro
Loss Landscape Analysis for Reliable Quantized ML Models for Scientific Sensing
Baldi, Tommaso, Campos, Javier, Weng, Olivia, Geniesse, Caleb, Tran, Nhan, Kastner, Ryan, Biondi, Alessandro
In this paper, we propose a method to perform empirical analysis of the loss landscape of machine learning (ML) models. The method is applied to two ML models for scientific sensing, which necessitates quantization to be deployed and are subject to noise and perturbations due to experimental conditions. Our method allows assessing the robustness of ML models to such effects as a function of quantization precision and under different regularization techniques -- two crucial concerns that remained underexplored so far. By investigating the interplay between performance, efficiency, and robustness by means of loss landscape analysis, we both established a strong correlation between gently-shaped landscapes and robustness to input and weight perturbations and observed other intriguing and non-obvious phenomena. Our method allows a systematic exploration of such trade-offs a priori, i.e., without training and testing multiple models, leading to more efficient development workflows. This work also highlights the importance of incorporating robustness into the Pareto optimization of ML models, enabling more reliable and adaptive scientific sensing systems.
Edge-Only Universal Adversarial Attacks in Distributed Learning
Rossolini, Giulio, Baldi, Tommaso, Biondi, Alessandro, Buttazzo, Giorgio
Distributed learning frameworks, which partition neural network models across multiple computing nodes, enhance efficiency in collaborative edge-cloud systems but may also introduce new vulnerabilities. In this work, we explore the feasibility of generating universal adversarial attacks when an attacker has access to the edge part of the model only, which consists in the first network layers. Unlike traditional universal adversarial perturbations (UAPs) that require full model knowledge, our approach shows that adversaries can induce effective mispredictions in the unknown cloud part by leveraging key features on the edge side. Specifically, we train lightweight classifiers from intermediate features available at the edge, i.e., before the split point, and use them in a novel targeted optimization to craft effective UAPs. Our results on ImageNet demonstrate strong attack transferability to the unknown cloud part. Additionally, we analyze the capability of an attacker to achieve targeted adversarial effect with edge-only knowledge, revealing intriguing behaviors. By introducing the first adversarial attacks with edge-only knowledge in split inference, this work underscores the importance of addressing partial model access in adversarial robustness, encouraging further research in this area.
Attention-Based Real-Time Defenses for Physical Adversarial Attacks in Vision Applications
Rossolini, Giulio, Biondi, Alessandro, Buttazzo, Giorgio
Deep neural networks exhibit excellent performance in computer vision tasks, but their vulnerability to real-world adversarial attacks, achieved through physical objects that can corrupt their predictions, raises serious security concerns for their application in safety-critical domains. Existing defense methods focus on single-frame analysis and are characterized by high computational costs that limit their applicability in multi-frame scenarios, where real-time decisions are crucial. To address this problem, this paper proposes an efficient attention-based defense mechanism that exploits adversarial channel-attention to quickly identify and track malicious objects in shallow network layers and mask their adversarial effects in a multi-frame setting. This work advances the state of the art by enhancing existing over-activation techniques for real-world adversarial attacks to make them usable in real-time applications. It also introduces an efficient multi-frame defense framework, validating its efficacy through extensive experiments aimed at evaluating both defense performance and computational cost.
On the Real-World Adversarial Robustness of Real-Time Semantic Segmentation Models for Autonomous Driving
Rossolini, Giulio, Nesti, Federico, D'Amico, Gianluca, Nair, Saasha, Biondi, Alessandro, Buttazzo, Giorgio
The existence of real-world adversarial examples (commonly in the form of patches) poses a serious threat for the use of deep learning models in safety-critical computer vision tasks such as visual perception in autonomous driving. This paper presents an extensive evaluation of the robustness of semantic segmentation models when attacked with different types of adversarial patches, including digital, simulated, and physical ones. A novel loss function is proposed to improve the capabilities of attackers in inducing a misclassification of pixels. Also, a novel attack strategy is presented to improve the Expectation Over Transformation method for placing a patch in the scene. Finally, a state-of-the-art method for detecting adversarial patch is first extended to cope with semantic segmentation models, then improved to obtain real-time performance, and eventually evaluated in real-world scenarios. Experimental results reveal that, even though the adversarial effect is visible with both digital and real-world attacks, its impact is often spatially confined to areas of the image around the patch. This opens to further questions about the spatial robustness of real-time semantic segmentation models.
On the Minimal Adversarial Perturbation for Deep Neural Networks with Provable Estimation Error
Brau, Fabio, Rossolini, Giulio, Biondi, Alessandro, Buttazzo, Giorgio
Although Deep Neural Networks (DNNs) have shown incredible performance in perceptive and control tasks, several trustworthy issues are still open. One of the most discussed topics is the existence of adversarial perturbations, which has opened an interesting research line on provable techniques capable of quantifying the robustness of a given input. In this regard, the Euclidean distance of the input from the classification boundary denotes a well-proved robustness assessment as the minimal affordable adversarial perturbation. Unfortunately, computing such a distance is highly complex due the non-convex nature of NNs. Despite several methods have been proposed to address this issue, to the best of our knowledge, no provable results have been presented to estimate and bound the error committed. This paper addresses this issue by proposing two lightweight strategies to find the minimal adversarial perturbation. Differently from the state-of-the-art, the proposed approach allows formulating an error estimation theory of the approximate distance with respect to the theoretical one. Finally, a substantial set of experiments is reported to evaluate the performance of the algorithms and support the theoretical findings. The obtained results show that the proposed strategies approximate the theoretical distance for samples close to the classification boundary, leading to provable robustness guarantees against any adversarial attacks.
Increasing the Confidence of Deep Neural Networks by Coverage Analysis
Rossolini, Giulio, Biondi, Alessandro, Buttazzo, Giorgio Carlo
The great performance of machine learning algorithms and deep neural networks in several perception and control tasks is pushing the industry to adopt such technologies in safety-critical applications, as autonomous robots and self-driving vehicles. At present, however, several issues need to be solved to make deep learning methods more trustworthy, predictable, safe, and secure against adversarial attacks. Although several methods have been proposed to improve the trustworthiness of deep neural networks, most of them are tailored for specific classes of adversarial examples, hence failing to detect other corner cases or unsafe inputs that heavily deviate from the training samples. This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model robustness against different unsafe inputs. In particular, four coverage analysis methods are proposed and tested in the architecture for evaluating multiple detection logics. Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs, introducing limited extra-execution time and memory requirements.