Bian, Yatao
InversionGNN: A Dual Path Network for Multi-Property Molecular Optimization
Niu, Yifan, Gao, Ziqi, Xu, Tingyang, Liu, Yang, Bian, Yatao, Rong, Yu, Huang, Junzhou, Li, Jia
Exploring chemical space to find novel molecules that simultaneously satisfy multiple properties is crucial in drug discovery. However, existing methods often struggle with trading off multiple properties due to the conflicting or correlated nature of chemical properties. To tackle this issue, we introduce InversionGNN framework, an effective yet sample-efficient dual-path graph neural network (GNN) for multi-objective drug discovery. In the direct prediction path of InversionGNN, we train the model for multi-property prediction to acquire knowledge of the optimal combination of functional groups. Then the learned chemical knowledge helps the inversion generation path to generate molecules with required properties. In order to decode the complex knowledge of multiple properties in the inversion path, we propose a gradient-based Pareto search method to balance conflicting properties and generate Pareto optimal molecules. Additionally, InversionGNN is able to search the full Pareto front approximately in discrete chemical space. Comprehensive experimental evaluations show that InversionGNN is both effective and sample-efficient in various discrete multi-objective settings including drug discovery.
Measuring Diversity in Synthetic Datasets
Zhu, Yuchang, Zhang, Huizhe, Wu, Bingzhe, Li, Jintang, Zheng, Zibin, Zhao, Peilin, Chen, Liang, Bian, Yatao
Large language models (LLMs) are widely adopted to generate synthetic datasets for various natural language processing (NLP) tasks, such as text classification and summarization. However, accurately measuring the diversity of these synthetic datasets-an aspect crucial for robust model performance-remains a significant challenge. In this paper, we introduce DCScore, a novel method for measuring synthetic dataset diversity from a classification perspective. Specifically, DCScore formulates diversity evaluation as a sample classification task, leveraging mutual relationships among samples. We further provide theoretical verification of the diversity-related axioms satisfied by DCScore, highlighting its role as a principled diversity evaluation method. Experimental results on synthetic datasets reveal that DCScore enjoys a stronger correlation with multiple diversity pseudo-truths of evaluated datasets, underscoring its effectiveness. Moreover, both empirical and theoretical evidence demonstrate that DCScore substantially reduces computational costs compared to existing approaches. Code is available at: https://github.com/BlueWhaleLab/DCScore.
ConML: A Universal Meta-Learning Framework with Task-Level Contrastive Learning
Wu, Shiguang, Wang, Yaqing, Bian, Yatao, Yao, Quanming
Meta-learning enables learning systems to adapt quickly to new tasks, similar to humans. To emulate this human-like rapid learning and enhance alignment and discrimination abilities, we propose ConML, a universal meta-learning framework that can be applied to various meta-learning algorithms without relying on specific model architectures nor target models. The core of ConML is task-level contrastive learning, which extends contrastive learning from the representation space in unsupervised learning to the model space in meta-learning. By leveraging task identity as an additional supervision signal during meta-training, we contrast the outputs of the meta-learner in the model space, minimizing inner-task distance (between models trained on different subsets of the same task) and maximizing inter-task distance (between models from different tasks). We demonstrate that ConML integrates seamlessly with optimization-based, metric-based, and amortization-based meta-learning algorithms, as well as in-context learning, resulting in performance improvements across diverse few-shot learning tasks. Meta-learning, or "learning to learn" (Schmidhuber, 1987; Thrun & Pratt, 1998), is a powerful paradigm designed to enable learning systems to adapt quickly to new tasks. During the meta-training phase, a meta-learner simulates learning across a variety of relevant tasks to accumulate knowledge on how to adapt effectively.
COME: Test-time adaption by Conservatively Minimizing Entropy
Zhang, Qingyang, Bian, Yatao, Kong, Xinke, Zhao, Peilin, Zhang, Changqing
As the predominant principle, entropy minimization (EM) has been proven to be a simple yet effective cornerstone in existing test-time adaption (TTA) methods. While unfortunately its fatal limitation (i.e., overconfidence) tends to result in model collapse. For this issue, we propose to Conservatively Minimize the Entropy (COME), which is a simple drop-in replacement of traditional EM to elegantly address the limitation. By doing so, COME naturally regularizes the model to favor conservative confidence on unreliable samples. Theoretically, we provide a preliminary analysis to reveal the ability of COME in enhancing the optimization stability by introducing a data-adaptive lower bound on the entropy. Empirically, our method achieves state-of-the-art performance on commonly used benchmarks, showing significant improvements in terms of classification accuracy and uncertainty estimation under various settings including standard, life-long and open-world TTA, i.e., up to 34.5% improvement on accuracy and 15.1% on false positive rate. Endowing machine learning models with self-adjust ability is essential for their deployment in the open world, such as autonomous vehicle control and embodied AI systems. To this end, test-time adaption (TTA) emerges as a promising strategy to enhance the performance in the open world which often encounters unexpected noise or corruption (e.g., data from rainy or snowy weather). Unsupervised losses play a crucial role in model adaptation, which can improve the accuracy of a model on novel distributional test data without the need for additional labeled training data. The initial intuition behind using entropy minimization, given by (Wang et al., 2021) is based on the observation that models tend to be more accurate on samples for which they make predictions with higher confidence. The natural extension of this observation is to encourage models to bolster the confidence on test samples.
The Best of Both Worlds: On the Dilemma of Out-of-distribution Detection
Zhang, Qingyang, Feng, Qiuxuan, Zhou, Joey Tianyi, Bian, Yatao, Hu, Qinghua, Zhang, Changqing
Out-of-distribution (OOD) detection is essential for model trustworthiness which aims to sensitively identify semantic OOD samples and robustly generalize for covariate-shifted OOD samples. However, we discover that the superior OOD detection performance of state-of-the-art methods is achieved by secretly sacrificing the OOD generalization ability. Specifically, the classification accuracy of these models could deteriorate dramatically when they encounter even minor noise. This phenomenon contradicts the goal of model trustworthiness and severely restricts their applicability in real-world scenarios. What is the hidden reason behind such a limitation? In this work, we theoretically demystify the ``\textit{sensitive-robust}'' dilemma that lies in many existing OOD detection methods. Consequently, a theory-inspired algorithm is induced to overcome such a dilemma. By decoupling the uncertainty learning objective from a Bayesian perspective, the conflict between OOD detection and OOD generalization is naturally harmonized and a dual-optimal performance could be expected. Empirical studies show that our method achieves superior performance on standard benchmarks. To our best knowledge, this work is the first principled OOD detection method that achieves state-of-the-art OOD detection performance without compromising OOD generalization ability. Our code is available at \href{https://github.com/QingyangZhang/DUL}{https://github.com/QingyangZhang/DUL}.
Probing the Safety Response Boundary of Large Language Models via Unsafe Decoding Path Generation
Wang, Haoyu, Wu, Bingzhe, Bian, Yatao, Chang, Yongzhe, Wang, Xueqian, Zhao, Peilin
Large Language Models (LLMs) are implicit troublemakers. While they provide valuable insights and assist in problem-solving, they can also potentially serve as a resource for malicious activities. Implementing safety alignment could mitigate the risk of LLMs generating harmful responses. We argue that: even when an LLM appears to successfully block harmful queries, there may still be hidden vulnerabilities that could act as ticking time bombs. To identify these underlying weaknesses, we propose to use a cost value model as both a detector and an attacker. Trained on external or self-generated harmful datasets, the cost value model could successfully influence the original safe LLM to output toxic content in decoding process. For instance, LLaMA-2-chat 7B outputs 39.18% concrete toxic content, along with only 22.16% refusals without any harmful suffixes. These potential weaknesses can then be exploited via prompt optimization such as soft prompts on images. We name this decoding strategy: Jailbreak Value Decoding (JVD), emphasizing that seemingly secure LLMs may not be as safe as we initially believe. They could be used to gather harmful data or launch covert attacks.
HIGHT: Hierarchical Graph Tokenization for Graph-Language Alignment
Chen, Yongqiang, Yao, Quanming, Zhang, Juzheng, Cheng, James, Bian, Yatao
Recently there has been a surge of interest in extending the success of large language models (LLMs) to graph modality, such as social networks and molecules. As LLMs are predominantly trained with 1D text data, most existing approaches adopt a graph neural network to represent a graph as a series of node tokens and feed these tokens to LLMs for graph-language alignment. Despite achieving some successes, existing approaches have overlooked the hierarchical structures that are inherent in graph data. Especially, in molecular graphs, the high-order structural information contains rich semantics of molecular functional groups, which encode crucial biochemical functionalities of the molecules. We establish a simple benchmark showing that neglecting the hierarchical information in graph tokenization will lead to subpar graph-language alignment and severe hallucination in generated outputs. To address this problem, we propose a novel strategy called HIerarchical GrapH Tokenization (HIGHT). HIGHT employs a hierarchical graph tokenizer that extracts and encodes the hierarchy of node, motif, and graph levels of informative tokens to improve the graph perception of LLMs. HIGHT also adopts an augmented graph-language supervised fine-tuning dataset, enriched with the hierarchical graph information, to further enhance the graph-language alignment. Extensive experiments on 7 molecule-centric benchmarks confirm the effectiveness of HIGHT in reducing hallucination by 40%, as well as significant improvements in various molecule-language downstream tasks.
How Interpretable Are Interpretable Graph Neural Networks?
Chen, Yongqiang, Bian, Yatao, Han, Bo, Cheng, James
Interpretable graph neural networks (XGNNs ) are widely adopted in various scientific applications involving graph-structured data. Existing XGNNs predominantly adopt the attention-based mechanism to learn edge or node importance for extracting and making predictions with the interpretable subgraph. However, the representational properties and limitations of these methods remain inadequately explored. In this work, we present a theoretical framework that formulates interpretable subgraph learning with the multilinear extension of the subgraph distribution, coined as subgraph multilinear extension (SubMT). Extracting the desired interpretable subgraph requires an accurate approximation of SubMT, yet we find that the existing XGNNs can have a huge gap in fitting SubMT. Consequently, the SubMT approximation failure will lead to the degenerated interpretability of the extracted subgraphs. To mitigate the issue, we design a new XGNN architecture called Graph Multilinear neT (GMT), which is provably more powerful in approximating SubMT. We empirically validate our theoretical findings on a number of graph classification benchmarks. The results demonstrate that GMT outperforms the state-of-the-art up to 10% in terms of both interpretability and generalizability across 12 regular and geometric graph benchmarks.
Graph Unitary Message Passing
Qiu, Haiquan, Bian, Yatao, Yao, Quanming
Message passing mechanism contributes to the success of GNNs in various applications, but also brings the oversquashing problem. Recent works combat oversquashing by improving the graph spectrums with rewiring techniques, disrupting the structural bias in graphs, and having limited improvement on oversquashing in terms of oversquashing measure. Motivated by unitary RNN, we propose Graph Unitary Message Passing (GUMP) to alleviate oversquashing in GNNs by applying unitary adjacency matrix for message passing. To design GUMP, a transformation is first proposed to make general graphs have unitary adjacency matrix and keep its structural bias. Then, unitary adjacency matrix is obtained with a unitary projection algorithm, which is implemented by utilizing the intrinsic structure of unitary adjacency matrix and allows GUMP to be permutation-equivariant. Experimental results show the effectiveness of GUMP in improving the performance on various graph learning tasks.
Step-On-Feet Tuning: Scaling Self-Alignment of LLMs via Bootstrapping
Wang, Haoyu, Ma, Guozheng, Meng, Ziqiao, Qin, Zeyu, Shen, Li, Zhang, Zhong, Wu, Bingzhe, Liu, Liu, Bian, Yatao, Xu, Tingyang, Wang, Xueqian, Zhao, Peilin
Self-alignment is an effective way to reduce the cost of human annotation while ensuring promising model capability. However, most current methods complete the data collection and training steps in a single round, which may overlook the continuously improving ability of self-aligned models. This gives rise to a key query: What if we do multi-time bootstrapping self-alignment? Does this strategy enhance model performance or lead to rapid degradation? In this paper, our pioneering exploration delves into the impact of bootstrapping self-alignment on large language models. Our findings reveal that bootstrapping self-alignment markedly surpasses the single-round approach, by guaranteeing data diversity from in-context learning. To further exploit the capabilities of bootstrapping, we investigate and adjust the training order of data, which yields improved performance of the model. Drawing on these findings, we propose Step-On-Feet Tuning (SOFT) which leverages model's continuously enhanced few-shot ability to boost zero or one-shot performance. Based on easy-to-hard training recipe, we propose SOFT+ which further boost self-alignment's performance. Our experiments demonstrate the efficiency of SOFT (SOFT+) across various classification and generation tasks, highlighting the potential of bootstrapping self-alignment on continually enhancing model alignment performance.