Goto

Collaborating Authors

 Bharadhwaj, Homanga


HandsOnVLM: Vision-Language Models for Hand-Object Interaction Prediction

arXiv.org Artificial Intelligence

How can we predict future interaction trajectories of human hands in a scene given high-level colloquial task specifications in the form of natural language? In this paper, we extend the classic hand trajectory prediction task to two tasks involving explicit or implicit language queries. Our proposed tasks require extensive understanding of human daily activities and reasoning abilities about what should be happening next given cues from the current scene. We also develop new benchmarks to evaluate the proposed two tasks, Vanilla Hand Prediction (VHP) and Reasoning-Based Hand Prediction (RBHP). We enable solving these tasks by integrating high-level world knowledge and reasoning capabilities of Vision-Language Models (VLMs) with the auto-regressive nature of low-level ego-centric hand trajectories. Our model, HandsOnVLM is a novel VLM that can generate textual responses and produce future hand trajectories through natural-language conversations. Our experiments show that HandsOnVLM outperforms existing task-specific methods and other VLM baselines on proposed tasks, and demonstrates its ability to effectively utilize world knowledge for reasoning about low-level human hand trajectories based on the provided context. Our website contains code and detailed video results https://www.chenbao.tech/handsonvlm/


Gen2Act: Human Video Generation in Novel Scenarios enables Generalizable Robot Manipulation

arXiv.org Artificial Intelligence

How can robot manipulation policies generalize to novel tasks involving unseen object types and new motions? In this paper, we provide a solution in terms of predicting motion information from web data through human video generation and conditioning a robot policy on the generated video. Instead of attempting to scale robot data collection which is expensive, we show how we can leverage video generation models trained on easily available web data, for enabling generalization. Our approach Gen2Act casts language-conditioned manipulation as zero-shot human video generation followed by execution with a single policy conditioned on the generated video. To train the policy, we use an order of magnitude less robot interaction data compared to what the video prediction model was trained on. Gen2Act doesn't require fine-tuning the video model at all and we directly use a pre-trained model for generating human videos. Our results on diverse real-world scenarios show how Gen2Act enables manipulating unseen object types and performing novel motions for tasks not present in the robot data. Videos are at https://homangab.github.io/gen2act/


Track2Act: Predicting Point Tracks from Internet Videos enables Diverse Zero-shot Robot Manipulation

arXiv.org Artificial Intelligence

We seek to learn a generalizable goal-conditioned policy that enables zero-shot robot manipulation: interacting with unseen objects in novel scenes without test-time adaptation. While typical approaches rely on a large amount of demonstration data for such generalization, we propose an approach that leverages web videos to predict plausible interaction plans and learns a task-agnostic transformation to obtain robot actions in the real world. Our framework,Track2Act predicts tracks of how points in an image should move in future time-steps based on a goal, and can be trained with diverse videos on the web including those of humans and robots manipulating everyday objects. We use these 2D track predictions to infer a sequence of rigid transforms of the object to be manipulated, and obtain robot end-effector poses that can be executed in an open-loop manner. We then refine this open-loop plan by predicting residual actions through a closed loop policy trained with a few embodiment-specific demonstrations. We show that this approach of combining scalably learned track prediction with a residual policy requiring minimal in-domain robot-specific data enables zero-shot robot manipulation, and present a wide array of real-world robot manipulation results across unseen tasks, objects, and scenes. https://homangab.github.io/track2act/


Towards Generalizable Zero-Shot Manipulation via Translating Human Interaction Plans

arXiv.org Artificial Intelligence

We pursue the goal of developing robots that can interact zero-shot with generic unseen objects via a diverse repertoire of manipulation skills and show how passive human videos can serve as a rich source of data for learning such generalist robots. Unlike typical robot learning approaches which directly learn how a robot should act from interaction data, we adopt a factorized approach that can leverage large-scale human videos to learn how a human would accomplish a desired task (a human plan), followed by translating this plan to the robots embodiment. Specifically, we learn a human plan predictor that, given a current image of a scene and a goal image, predicts the future hand and object configurations. We combine this with a translation module that learns a plan-conditioned robot manipulation policy, and allows following humans plans for generic manipulation tasks in a zero-shot manner with no deployment-time training. Importantly, while the plan predictor can leverage large-scale human videos for learning, the translation module only requires a small amount of in-domain data, and can generalize to tasks not seen during training. We show that our learned system can perform over 16 manipulation skills that generalize to 40 objects, encompassing 100 real-world tasks for table-top manipulation and diverse in-the-wild manipulation. https://homangab.github.io/hopman/


RoboAgent: Generalization and Efficiency in Robot Manipulation via Semantic Augmentations and Action Chunking

arXiv.org Artificial Intelligence

The grand aim of having a single robot that can manipulate arbitrary objects in diverse settings is at odds with the paucity of robotics datasets. Acquiring and growing such datasets is strenuous due to manual efforts, operational costs, and safety challenges. A path toward such an universal agent would require a structured framework capable of wide generalization but trained within a reasonable data budget. In this paper, we develop an efficient system (RoboAgent) for training universal agents capable of multi-task manipulation skills using (a) semantic augmentations that can rapidly multiply existing datasets and (b) action representations that can extract performant policies with small yet diverse multi-modal datasets without overfitting. In addition, reliable task conditioning and an expressive policy architecture enable our agent to exhibit a diverse repertoire of skills in novel situations specified using language commands. Using merely 7500 demonstrations, we are able to train a single agent capable of 12 unique skills, and demonstrate its generalization over 38 tasks spread across common daily activities in diverse kitchen scenes. On average, RoboAgent outperforms prior methods by over 40% in unseen situations while being more sample efficient and being amenable to capability improvements and extensions through fine-tuning. Videos at https://robopen.github.io/


Simplifying Model-based RL: Learning Representations, Latent-space Models, and Policies with One Objective

arXiv.org Artificial Intelligence

While reinforcement learning (RL) methods that learn an internal model of the environment have the potential to be more sample efficient than their model-free counterparts, learning to model raw observations from high dimensional sensors can be challenging. Prior work has addressed this challenge by learning low-dimensional representation of observations through auxiliary objectives, such as reconstruction or value prediction. However, the alignment between these auxiliary objectives and the RL objective is often unclear. In this work, we propose a single objective which jointly optimizes a latent-space model and policy to achieve high returns while remaining self-consistent. This objective is a lower bound on expected returns. Unlike prior bounds for model-based RL on policy exploration or model guarantees, our bound is directly on the overall RL objective. We demonstrate that the resulting algorithm matches or improves the sample-efficiency of the best prior model-based and model-free RL methods. While sample efficient methods typically are computationally demanding, our method attains the performance of SAC in about 50% less wall-clock time.


Visual Affordance Prediction for Guiding Robot Exploration

arXiv.org Artificial Intelligence

Motivated by the intuitive understanding humans have about the space of possible interactions, and the ease with which they can generalize this understanding to previously unseen scenes, we develop an approach for learning visual affordances for guiding robot exploration. Given an input image of a scene, we infer a distribution over plausible future states that can be achieved via interactions with it. We use a Transformer-based model to learn a conditional distribution in the latent embedding space of a VQ-VAE and show that these models can be trained using large-scale and diverse passive data, and that the learned models exhibit compositional generalization to diverse objects beyond the training distribution. We show how the trained affordance model can be used for guiding exploration by acting as a goal-sampling distribution, during visual goal-conditioned policy learning in robotic manipulation.


CACTI: A Framework for Scalable Multi-Task Multi-Scene Visual Imitation Learning

arXiv.org Artificial Intelligence

Large-scale training have propelled significant progress in various sub-fields of AI such as computer vision and natural language processing. However, building robot learning systems at a comparable scale remains challenging. To develop robots that can perform a wide range of skills and adapt to new scenarios, efficient methods for collecting vast and diverse amounts of data on physical robot systems are required, as well as the capability to train high-capacity policies using such datasets. In this work, we propose a framework for scaling robot learning, with specific focus on multi-task and multi-scene manipulation in kitchen environments, both in simulation and in the real world. Our proposed framework, CACTI, comprises four stages that separately handle: data collection, data augmentation, visual representation learning, and imitation policy training, to enable scalability in robot learning . We make use of state-of-the-art generative models as part of the data augmentation stage, and use pre-trained out-of-domain visual representations to improve training efficiency. Experimental results demonstrate the effectiveness of our approach. On a real robot setup, CACTI enables efficient training of a single policy that can perform 10 manipulation tasks involving kitchen objects, and is robust to varying layouts of distractors. In a simulated kitchen environment, CACTI trains a single policy to perform 18 semantic tasks across 100 layout variations for each individual task. We will release the simulation task benchmark and augmented datasets in both real and simulated environments to facilitate future research.


Zero-Shot Robot Manipulation from Passive Human Videos

arXiv.org Artificial Intelligence

Can we learn robot manipulation for everyday tasks, only by watching videos of humans doing arbitrary tasks in different unstructured settings? Unlike widely adopted strategies of learning task-specific behaviors or direct imitation of a human video, we develop a a framework for extracting agent-agnostic action representations from human videos, and then map it to the agent's embodiment during deployment. Our framework is based on predicting plausible human hand trajectories given an initial image of a scene. After training this prediction model on a diverse set of human videos from the internet, we deploy the trained model zero-shot for physical robot manipulation tasks, after appropriate transformations to the robot's embodiment. This simple strategy lets us solve coarse manipulation tasks like opening and closing drawers, pushing, and tool use, without access to any in-domain robot manipulation trajectories. Our real-world deployment results establish a strong baseline for action prediction information that can be acquired from diverse arbitrary videos of human activities, and be useful for zero-shot robotic manipulation in unseen scenes.


Offline Policy Optimization in RL with Variance Regularizaton

arXiv.org Artificial Intelligence

Learning policies from fixed offline datasets is a key challenge to scale up reinforcement learning (RL) algorithms towards practical applications. This is often because off-policy RL algorithms suffer from distributional shift, due to mismatch between dataset and the target policy, leading to high variance and over-estimation of value functions. In this work, we propose variance regularization for offline RL algorithms, using stationary distribution corrections. We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer. The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms. We show that the regularizer leads to a lower bound to the offline policy optimization objective, which can help avoid over-estimation errors, and explains the benefits of our approach across a range of continuous control domains when compared to existing state-of-the-art algorithms.