Goto

Collaborating Authors

 Bent, Russell


Formulations and scalability of neural network surrogates in nonlinear optimization problems

arXiv.org Artificial Intelligence

We compare full-space, reduced-space, and gray-box formulations for representing trained neural networks in nonlinear constrained optimization problems. We test these formulations on a transient stability-constrained, security-constrained alternating current optimal power flow (SCOPF) problem where the transient stability criteria are represented by a trained neural network surrogate. Optimization problems are implemented in JuMP and trained neural networks are embedded using a new Julia package: MathOptAI.jl. To study the bottlenecks of the three formulations, we use neural networks with up to 590 million trained parameters. The full-space formulation is bottlenecked by the linear solver used by the optimization algorithm, while the reduced-space formulation is bottlenecked by the algebraic modeling environment and derivative computations. The gray-box formulation is the most scalable and is capable of solving with the largest neural networks tested. It is bottlenecked by evaluation of the neural network's outputs and their derivatives, which may be accelerated with a graphics processing unit (GPU). Leveraging the gray-box formulation and GPU acceleration, we solve our test problem with our largest neural network surrogate in 2.5$\times$ the time required for a simpler SCOPF problem without the stability constraint.


Physics-Informed Heterogeneous Graph Neural Networks for DC Blocker Placement

arXiv.org Artificial Intelligence

The threat of geomagnetic disturbances (GMDs) to the reliable operation of the bulk energy system has spurred the development of effective strategies for mitigating their impacts. One such approach involves placing transformer neutral blocking devices, which interrupt the path of geomagnetically induced currents (GICs) to limit their impact. The high cost of these devices and the sparsity of transformers that experience high GICs during GMD events, however, calls for a sparse placement strategy that involves high computational cost. To address this challenge, we developed a physics-informed heterogeneous graph neural network (PIHGNN) for solving the graph-based dc-blocker placement problem. Our approach combines a heterogeneous graph neural network (HGNN) with a physics-informed neural network (PINN) to capture the diverse types of nodes and edges in ac/dc networks and incorporates the physical laws of the power grid. We train the PIHGNN model using a surrogate power flow model and validate it using case studies. Results demonstrate that PIHGNN can effectively and efficiently support the deployment of GIC dc-current blockers, ensuring the continued supply of electricity to meet societal demands. Our approach has the potential to contribute to the development of more reliable and resilient power grids capable of withstanding the growing threat that GMDs pose.


Evaluating Ising Processing Units with Integer Programming

arXiv.org Artificial Intelligence

The recent emergence of novel computational devices, such as adiabatic quantum computers, CMOS annealers, and optical parametric oscillators, present new opportunities for hybrid-optimization algorithms that are hardware accelerated by these devices. In this work, we propose the idea of an Ising processing unit as a computational abstraction for reasoning about these emerging devices. The challenges involved in using and benchmarking these devices are presented and commercial mixed integer programming solvers are proposed as a valuable tool for the validation of these disparate hardware platforms. The proposed validation methodology is demonstrated on a D-Wave 2X adiabatic quantum computer, one example of an Ising processing unit. The computational results demonstrate that the D-Wave hardware consistently produces high-quality solutions and suggests that as IPU technology matures it could become a valuable co-processor in hybrid-optimization algorithms.


HVAC-Aware Occupancy Scheduling

AAAI Conferences

Energy consumption in commercial and educational buildings is impacted by group activities such as meetings, workshops, classes and exams, and can be reduced by scheduling these activities to take place at times and locations that are favorable from an energy standpoint. This paper improves on the effectiveness of energy-aware room-booking and occupancy scheduling approaches, by allowing the scheduling decisions to rely on an explicit model of the building's occupancy-based HVAC control. The core component of our approach is a mixed-integer linear programming (MILP) model which optimally solves the joint occupancy scheduling and occupancy-based HVAC control problem. To scale up to realistic problem sizes, we embed this MILP model into a large neighbourhood search (LNS). We obtain substantial energy reduction in comparison with occupancy-based HVAC control using arbitrary schedules or using schedules obtained by existing heuristic energy-aware scheduling approaches.


Resilient Upgrade of Electrical Distribution Grids

AAAI Conferences

Modern society is critically dependent on the services provided by engineered infrastructure networks. When natural disasters (e.g. Hurricane Sandy) occur, the ability of these networks to provide service is often degraded because of physical damage to network components. One of the most critical of these networks is the electrical distribution grid, with medium voltage circuits often suffering the most severe damage. However, well-placed upgrades to these distribution grids can greatly improve post-event network performance. We formulate an optimal electrical distribution grid design problem as a two-stage, stochastic mixed-integer program with damage scenarios from natural disasters modeled as a set of stochastic events. We develop and investigate the tractability of an exact and several heuristic algorithms based on decompositions that are hybrids of techniques developed by the AI and operations research communities. We provide computational evidence that these algorithms have significant benefits when compared with commercial, mixed-integer programming software.


HVAC-Aware Occupancy Scheduling

AAAI Conferences

Energy consumption in commercial and educational buildings is impacted by group activities such as meetings, workshops, classes and exams, and can be reduced by scheduling these activities to take place at times and locations that are favorable from an energy standpoint. This paper improves on the effectiveness of energy-aware room-booking and occupancy scheduling approaches, by allowing the scheduling decisions to rely on an explicit model of the building's occupancy-based HVAC control. The core component of our approach is a mixed-integer linear programming (MILP) model which optimally solves the joint occupancy scheduling and occupancy-based HVAC control problem. To scale up to realistic problem sizes, we embed this MILP model into a large neighbourhood search (LNS). We obtain substantial energy reduction in comparison with occupancy-based HVAC control using arbitrary schedules or using schedules obtained by existing heuristic energy-aware scheduling approaches.


Last-Mile Restoration for Multiple Interdependent Infrastructures

AAAI Conferences

This paper considers the restoration of multiple interdependent infrastructures after a man-made or natural disaster. Modern infrastructures feature complex cyclic interdependencies and require a holistic restoration process. This paper presents the first scalable approach for the last-mile restoration of the joint electrical power and gas infrastructures. It builds on an earlier three-stage decomposition for restoring the power network that decouples the restoration ordering and the routing aspects. The key contributions of the paper are (1) mixed-integer programming models for finding a minimal restoration set and a restoration ordering and (2) a randomized adaptive decomposition to obtain high-quality solutions within the required time constraints. The approach is validated on a large selection of benchmarks based on the United States infrastructures and state-of-the-art weather and fragility simulation tools. The results show significant improvements over current field practices.


Transmission Network Expansion Planning with Simulation Optimization

AAAI Conferences

Within the electric power literature the transmission expansion planning problem (TNEP) refers to the problem of how to upgrade an electric power network to meet future demands. As this problem is a complex, non-linear, and non-convex optimization problem, researchers have traditionally focused on approximate models of power flows. Existing approaches are often tightly coupled to the approximation choice. Until recently, these approximations have produced results that are straight-forward to adapt to the more complex (real) problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (e.g. large amounts of limited control, renewable generation) that necessitates new optimization techniques. In this paper, we propose a local search variation of the powerful Limited Discrepancy Search (LDLS) that encapsulates the complexity of power flows in a black box that may be queried for information about the quality of a proposed expansion. This allows the development of a new optimization algorithm that is independent of the underlying power model.