Goto

Collaborating Authors

 Beier, Max


Koopman-Equivariant Gaussian Processes

arXiv.org Machine Learning

Credible forecasting and representation learning of dynamical systems are of ever-increasing importance for reliable decision-making. To that end, we propose a family of Gaussian processes (GP) for dynamical systems with linear time-invariant responses, which are nonlinear only in initial conditions. This linearity allows us to tractably quantify forecasting and representational uncertainty, simultaneously alleviating the challenge of computing the distribution of trajectories from a GP-based dynamical system and enabling a new probabilistic treatment of learning Koopman operator representations. Using a trajectory-based equivariance -- which we refer to as \textit{Koopman equivariance} -- we obtain a GP model with enhanced generalization capabilities. To allow for large-scale regression, we equip our framework with variational inference based on suitable inducing points. Experiments demonstrate on-par and often better forecasting performance compared to kernel-based methods for learning dynamical systems.


Koopman Kernel Regression

arXiv.org Machine Learning

Many machine learning approaches for decision making, such as reinforcement learning, rely on simulators or predictive models to forecast the time-evolution of quantities of interest, e.g., the state of an agent or the reward of a policy. Forecasts of such complex phenomena are commonly described by highly nonlinear dynamical systems, making their use in optimization-based decision-making challenging. Koopman operator theory offers a beneficial paradigm for addressing this problem by characterizing forecasts via linear time-invariant (LTI) ODEs -- turning multi-step forecasting into sparse matrix multiplications. Though there exists a variety of learning approaches, they usually lack crucial learning-theoretic guarantees, making the behavior of the obtained models with increasing data and dimensionality unclear. We address the aforementioned by deriving a novel reproducing kernel Hilbert space (RKHS) over trajectories that solely spans transformations into LTI dynamical systems. The resulting Koopman Kernel Regression (KKR) framework enables the use of statistical learning tools from function approximation for novel convergence results and generalization error bounds under weaker assumptions than existing work. Our experiments demonstrate superior forecasting performance compared to Koopman operator and sequential data predictors in RKHS.