Bayat, Farima Fatahi
FactBench: A Dynamic Benchmark for In-the-Wild Language Model Factuality Evaluation
Bayat, Farima Fatahi, Zhang, Lechen, Munir, Sheza, Wang, Lu
The rapid adoption of language models (LMs) across diverse applications has raised concerns about their factuality, i.e., their consistency with real-world facts. We first present VERIFY (Verification and Evidence RetrIeval for FactualitY evaluation), a pipeline to evaluate LMs' factuality in real-world user interactions. VERIFY considers the verifiability of LM-generated content and categorizes content units as supported, unsupported, or undecidable based on Web-retrieved evidence. Importantly, factuality judgment by VERIFY correlates better with human evaluations than existing methods. Using VERIFY, we identify "hallucination prompts" across diverse topics, i.e., those eliciting the highest rates of incorrect (unsupported) and inconclusive (undecidable) LM responses. These prompts form FACTBENCH, a dataset of 1K prompts across 150 fine-grained topics. Our dataset captures emerging factuality challenges in real-world LM interactions and can be regularly updated with new prompts. We benchmark widely-used LMs from GPT, Gemini, and Llama families on FACTBENCH, yielding the following key findings: (i) Proprietary models exhibit better factuality, with decreased performance from Easy to Hard hallucination prompts. (ii) Llama3.1-405B-Instruct shows comparable or lower factual precision than Llama3.1-70B-Instruct across all evaluation methods due to its higher subjectivity that leads to more content labeled as undecidable. (iii) Gemini1.5-Pro shows a significantly higher refusal rate, with over-refusal in 25% of cases.
Enhancing Language Model Factuality via Activation-Based Confidence Calibration and Guided Decoding
Liu, Xin, Bayat, Farima Fatahi, Wang, Lu
Calibrating language models (LMs) aligns their generation confidence with the actual likelihood of answer correctness, which can inform users about LMs' reliability and mitigate hallucinated content. However, prior calibration methods, such as self-consistency-based and logit-based approaches, are either limited in inference-time efficiency or fall short of providing informative signals. Moreover, simply filtering out low-confidence responses reduces the LM's helpfulness when the answers are correct. Therefore, effectively using calibration techniques to enhance an LM's factuality remains an unsolved challenge. In this paper, we first propose an activation-based calibration method, ActCab, which trains a linear layer on top of the LM's last-layer activations that can better capture the representations of knowledge. Built on top of ActCab, we further propose CoDec, a confidence-guided decoding strategy to elicit truthful answers with high confidence from LMs. By evaluating on five popular QA benchmarks, ActCab achieves superior calibration performance than all competitive baselines, e.g., by reducing the average expected calibration error (ECE) score by up to 39%. Further experiments on CoDec show consistent improvements in several LMs' factuality on challenging QA datasets, such as TruthfulQA, highlighting the value of confidence signals in enhancing factuality.
Enhanced Language Model Truthfulness with Learnable Intervention and Uncertainty Expression
Bayat, Farima Fatahi, Liu, Xin, Jagadish, H. V., Wang, Lu
Large language models (LLMs) can generate long-form and coherent text, yet they often hallucinate facts, which undermines their reliability. To mitigate this issue, inference-time methods steer LLM representations toward the "truthful directions" previously learned for truth elicitation. However, applying these truthful directions with the same intensity fails to generalize across different query contexts. We propose LITO, a Learnable Intervention method for Truthfulness Optimization that automatically identifies the optimal intervention intensity tailored to each specific context. LITO explores a sequence of model generations based on increasing levels of intervention intensities. It selects the most accurate response or refuses to answer when the predictions are highly uncertain. Experiments on multiple LLMs and question-answering datasets demonstrate that LITO improves truthfulness while preserving task accuracy. The adaptive nature of LITO counters the limitations of one-size-fits-all intervention methods, maximizing truthfulness by reflecting the model's internal knowledge only when it is confident. Our code is available at https://github.com/launchnlp/LITO.
FLEEK: Factual Error Detection and Correction with Evidence Retrieved from External Knowledge
Bayat, Farima Fatahi, Qian, Kun, Han, Benjamin, Sang, Yisi, Belyi, Anton, Khorshidi, Samira, Wu, Fei, Ilyas, Ihab F., Li, Yunyao
Detecting factual errors in textual information, whether generated by large language models (LLM) or curated by humans, is crucial for making informed decisions. LLMs' inability to attribute their claims to external knowledge and their tendency to hallucinate makes it difficult to rely on their responses. Humans, too, are prone to factual errors in their writing. Since manual detection and correction of factual errors is labor-intensive, developing an automatic approach can greatly reduce human effort. We present FLEEK, a prototype tool that automatically extracts factual claims from text, gathers evidence from external knowledge sources, evaluates the factuality of each claim, and suggests revisions for identified errors using the collected evidence. Initial empirical evaluation on fact error detection (77-85\% F1) shows the potential of FLEEK. A video demo of FLEEK can be found at https://youtu.be/NapJFUlkPdQ.