Goto

Collaborating Authors

 Bauer, Lujo


On the Feasibility of Using LLMs to Execute Multistage Network Attacks

arXiv.org Artificial Intelligence

LLMs have shown preliminary promise in some security tasks and CTF challenges. However, it is unclear whether LLMs are able to realize multistage network attacks, which involve executing a wide variety of actions across multiple hosts such as conducting reconnaissance, exploiting vulnerabilities to gain initial access, leveraging internal hosts to move laterally, and using multiple compromised hosts to exfiltrate data. We evaluate LLMs across 10 multistage networks and find that popular LLMs are unable to realize these attacks. To enable LLMs to realize these attacks, we introduce Incalmo, an LLM-agnostic high-level attack abstraction layer that sits between an LLM and the environment. Rather than LLMs issuing low-level command-line instructions, which can lead to incorrect implementations, Incalmo allows LLMs to specify high-level tasks (e.g., infect a host, scan a network), which are then carried out by Incalmo. Incalmo realizes these tasks by translating them into low-level primitives (e.g., commands to exploit tools). Incalmo also provides an environment state service and an attack graph service to provide structure to LLMs in selecting actions relevant to a multistage attack. Across 9 out of 10 realistic emulated networks (from 25 to 50 hosts), LLMs using Incalmo can successfully autonomously execute multistage attacks. We also conduct an ablation analysis to show the key role the high-level abstractions play. For instance, we find that both Incalmo's high-level tasks and services are crucial. Furthermore, even smaller-parameter LLMs with Incalmo can fully succeed in 5 of 10 environments, while larger-parameter LLMs without Incalmo do not fully succeed in any.


Sales Whisperer: A Human-Inconspicuous Attack on LLM Brand Recommendations

arXiv.org Artificial Intelligence

Large language model (LLM) users might rely on others (e.g., prompting services), to write prompts. However, the risks of trusting prompts written by others remain unstudied. In this paper, we assess the risk of using such prompts on brand recommendation tasks when shopping. First, we found that paraphrasing prompts can result in LLMs mentioning given brands with drastically different probabilities, including a pair of prompts where the probability changes by 100%. Next, we developed an approach that can be used to perturb an original base prompt to increase the likelihood that an LLM mentions a given brand. We designed a human-inconspicuous algorithm that perturbs prompts, which empirically forces LLMs to mention strings related to a brand more often, by absolute improvements up to 78.3%. Our results suggest that our perturbed prompts, 1) are inconspicuous to humans, 2) force LLMs to recommend a target brand more often, and 3) increase the perceived chances of picking targeted brands.


RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers via Randomized Deletion

arXiv.org Machine Learning

Randomized smoothing is a leading approach for constructing classifiers that are certifiably robust against adversarial examples. Existing work on randomized smoothing has focused on classifiers with continuous inputs, such as images, where $\ell_p$-norm bounded adversaries are commonly studied. However, there has been limited work for classifiers with discrete or variable-size inputs, such as for source code, which require different threat models and smoothing mechanisms. In this work, we adapt randomized smoothing for discrete sequence classifiers to provide certified robustness against edit distance-bounded adversaries. Our proposed smoothing mechanism randomized deletion (RS-Del) applies random deletion edits, which are (perhaps surprisingly) sufficient to confer robustness against adversarial deletion, insertion and substitution edits. Our proof of certification deviates from the established Neyman-Pearson approach, which is intractable in our setting, and is instead organized around longest common subsequences. We present a case study on malware detection--a binary classification problem on byte sequences where classifier evasion is a well-established threat model. When applied to the popular MalConv malware detection model, our smoothing mechanism RS-Del achieves a certified accuracy of 91% at an edit distance radius of 128 bytes.


Group-based Robustness: A General Framework for Customized Robustness in the Real World

arXiv.org Artificial Intelligence

Machine-learning models are known to be vulnerable to evasion attacks that perturb model inputs to induce misclassifications. In this work, we identify real-world scenarios where the true threat cannot be assessed accurately by existing attacks. Specifically, we find that conventional metrics measuring targeted and untargeted robustness do not appropriately reflect a model's ability to withstand attacks from one set of source classes to another set of target classes. To address the shortcomings of existing methods, we formally define a new metric, termed group-based robustness, that complements existing metrics and is better-suited for evaluating model performance in certain attack scenarios. We show empirically that group-based robustness allows us to distinguish between models' vulnerability against specific threat models in situations where traditional robustness metrics do not apply. Moreover, to measure group-based robustness efficiently and accurately, we 1) propose two loss functions and 2) identify three new attack strategies. We show empirically that with comparable success rates, finding evasive samples using our new loss functions saves computation by a factor as large as the number of targeted classes, and finding evasive samples using our new attack strategies saves time by up to 99\% compared to brute-force search methods. Finally, we propose a defense method that increases group-based robustness by up to 3.52$\times$.


Randomness in ML Defenses Helps Persistent Attackers and Hinders Evaluators

arXiv.org Artificial Intelligence

It is becoming increasingly imperative to design robust ML defenses. However, recent work has found that many defenses that initially resist state-of-the-art attacks can be broken by an adaptive adversary. In this work we take steps to simplify the design of defenses and argue that white-box defenses should eschew randomness when possible. We begin by illustrating a new issue with the deployment of randomized defenses that reduces their security compared to their deterministic counterparts. We then provide evidence that making defenses deterministic simplifies robustness evaluation, without reducing the effectiveness of a truly robust defense. Finally, we introduce a new defense evaluation framework that leverages a defense's deterministic nature to better evaluate its adversarial robustness.