Goto

Collaborating Authors

 Bashyam, Vishnu


GaNDLF: A Generally Nuanced Deep Learning Framework for Scalable End-to-End Clinical Workflows in Medical Imaging

arXiv.org Artificial Intelligence

Deep Learning (DL) has the potential to optimize machine learning in both the scientific and clinical communities. However, greater expertise is required to develop DL algorithms, and the variability of implementations hinders their reproducibility, translation, and deployment. Here we present the community-driven Generally Nuanced Deep Learning Framework (GaNDLF), with the goal of lowering these barriers. GaNDLF makes the mechanism of DL development, training, and inference more stable, reproducible, interpretable, and scalable, without requiring an extensive technical background. GaNDLF aims to provide an end-to-end solution for all DL-related tasks in computational precision medicine. We demonstrate the ability of GaNDLF to analyze both radiology and histology images, with built-in support for k-fold cross-validation, data augmentation, multiple modalities and output classes. Our quantitative performance evaluation on numerous use cases, anatomies, and computational tasks supports GaNDLF as a robust application framework for deployment in clinical workflows.


Applications of Generative Adversarial Networks in Neuroimaging and Clinical Neuroscience

arXiv.org Artificial Intelligence

Generative adversarial networks (GANs) are one powerful type of deep learning models that have been successfully utilized in numerous fields. They belong to a broader family called generative methods, which generate new data with a probabilistic model by learning sample distribution from real examples. In the clinical context, GANs have shown enhanced capabilities in capturing spatially complex, nonlinear, and potentially subtle disease effects compared to traditional generative methods. This review appraises the existing literature on the applications of GANs in imaging studies of various neurological conditions, including Alzheimer's disease, brain tumors, brain aging, and multiple sclerosis. We provide an intuitive explanation of various GAN methods for each application and further discuss the main challenges, open questions, and promising future directions of leveraging GANs in neuroimaging. We aim to bridge the gap between advanced deep learning methods and neurology research by highlighting how GANs can be leveraged to support clinical decision making and contribute to a better understanding of the structural and functional patterns of brain diseases.