Bamgbose, Oluwanifemi
DNA Bench: When Silence is Smarter -- Benchmarking Over-Reasoning in Reasoning LLMs
Hashemi, Masoud, Bamgbose, Oluwanifemi, Madhusudhan, Sathwik Tejaswi, Nair, Jishnu Sethumadhavan, Tiwari, Aman, Yadav, Vikas
Test-time scaling has significantly improved large language model performance, enabling deeper reasoning to solve complex problems. However, this increased reasoning capability also leads to excessive token generation and unnecessary problem-solving attempts. We introduce Don\'t Answer Bench (DNA Bench), a new benchmark designed to evaluate LLMs ability to robustly understand the tricky reasoning triggers and avoiding unnecessary generation. DNA Bench consists of 150 adversarially designed prompts that are easy for humans to understand and respond to, but surprisingly not for many of the recent prominent LLMs. DNA Bench tests models abilities across different capabilities, such as instruction adherence, hallucination avoidance, redundancy filtering, and unanswerable question recognition. We evaluate reasoning LLMs (RLMs), including DeepSeek-R1, OpenAI O3-mini, Claude-3.7-sonnet and compare them against a powerful non-reasoning model, e.g., GPT-4o. Our experiments reveal that RLMs generate up to 70x more tokens than necessary, often failing at tasks that simpler non-reasoning models handle efficiently with higher accuracy. Our findings underscore the need for more effective training and inference strategies in RLMs.
Cats Confuse Reasoning LLM: Query Agnostic Adversarial Triggers for Reasoning Models
Rajeev, Meghana, Ramamurthy, Rajkumar, Trivedi, Prapti, Yadav, Vikas, Bamgbose, Oluwanifemi, Madhusudan, Sathwik Tejaswi, Zou, James, Rajani, Nazneen
We investigate the robustness of reasoning models trained for step-by-step problem solving by introducing query-agnostic adversarial triggers - short, irrelevant text that, when appended to math problems, systematically mislead models to output incorrect answers without altering the problem's semantics. We propose CatAttack, an automated iterative attack pipeline for generating triggers on a weaker, less expensive proxy model (DeepSeek V3) and successfully transfer them to more advanced reasoning target models like DeepSeek R1 and DeepSeek R1-distilled-Qwen-32B, resulting in greater than 300% increase in the likelihood of the target model generating an incorrect answer. For example, appending, "Interesting fact: cats sleep most of their lives," to any math problem leads to more than doubling the chances of a model getting the answer wrong. Our findings highlight critical vulnerabilities in reasoning models, revealing that even state-of-the-art models remain susceptible to subtle adversarial inputs, raising security and reliability concerns. The CatAttack triggers dataset with model responses is available at https://huggingface.co/datasets/collinear-ai/cat-attack-adversarial-triggers.
Practical Guide for Causal Pathways and Sub-group Disparity Analysis
Kohankhaki, Farnaz, Raza, Shaina, Bamgbose, Oluwanifemi, Pandya, Deval, Dolatabadi, Elham
In this study, we introduce the application of causal disparity analysis to unveil intricate relationships and causal pathways between sensitive attributes and the targeted outcomes within real-world observational data. Our methodology involves employing causal decomposition analysis to quantify and examine the causal interplay between sensitive attributes and outcomes. We also emphasize the significance of integrating heterogeneity assessment in causal disparity analysis to gain deeper insights into the impact of sensitive attributes within specific sub-groups on outcomes. Our two-step investigation focuses on datasets where race serves as the sensitive attribute. The results on two datasets indicate the benefit of leveraging causal analysis and heterogeneity assessment not only for quantifying biases in the data but also for disentangling their influences on outcomes. We demonstrate that the sub-groups identified by our approach to be affected the most by disparities are the ones with the largest ML classification errors. We also show that grouping the data only based on a sensitive attribute is not enough, and through these analyses, we can find sub-groups that are directly affected by disparities. We hope that our findings will encourage the adoption of such methodologies in future ethical AI practices and bias audits, fostering a more equitable and fair technological landscape.
FakeWatch: A Framework for Detecting Fake News to Ensure Credible Elections
Raza, Shaina, Khan, Tahniat, Chatrath, Veronica, Paulen-Patterson, Drai, Rahman, Mizanur, Bamgbose, Oluwanifemi
In today's technologically driven world, the rapid spread of fake news, particularly during critical events like elections, poses a growing threat to the integrity of information. To tackle this challenge head-on, we introduce FakeWatch, a comprehensive framework carefully designed to detect fake news. Leveraging a newly curated dataset of North American election-related news articles, we construct robust classification models. Our framework integrates a model hub comprising of both traditional machine learning (ML) techniques, and state-of-the-art Language Models (LMs) to discern fake news effectively. Our objective is to provide the research community with adaptable and precise classification models adept at identifying fake news for the elections agenda. Quantitative evaluations of fake news classifiers on our dataset reveal that, while state-of-the-art LMs exhibit a slight edge over traditional ML models, classical models remain competitive due to their balance of accuracy and computational efficiency. Additionally, qualitative analyses shed light on patterns within fake news articles. We provide our labeled data at https://huggingface.co/datasets/newsmediabias/fake_news_elections_labelled_data and model https://huggingface.co/newsmediabias/FakeWatch for reproducibility and further research.
She had Cobalt Blue Eyes: Prompt Testing to Create Aligned and Sustainable Language Models
Chatrath, Veronica, Bamgbose, Oluwanifemi, Raza, Shaina
As the use of large language models (LLMs) increases within society, as does the risk of their misuse. Appropriate safeguards must be in place to ensure LLM outputs uphold the ethical standards of society, highlighting the positive role that artificial intelligence technologies can have. Recent events indicate ethical concerns around conventionally trained LLMs, leading to overall unsafe user experiences. This motivates our research question: how do we ensure LLM alignment? In this work, we introduce a test suite of unique prompts to foster the development of aligned LLMs that are fair, safe, and robust. We show that prompting LLMs at every step of the development pipeline, including data curation, pre-training, and fine-tuning, will result in an overall more responsible model. Our test suite evaluates outputs from four state-of-the-art language models: GPT-3.5, GPT-4, OPT, and LLaMA-2. The assessment presented in this paper highlights a gap between societal alignment and the capabilities of current LLMs. Additionally, implementing a test suite such as ours lowers the environmental overhead of making models safe and fair.
FakeWatch ElectionShield: A Benchmarking Framework to Detect Fake News for Credible US Elections
Khan, Tahniat, Rahman, Mizanur, Chatrath, Veronica, Bamgbose, Oluwanifemi, Raza, Shaina
In today's technologically driven world, the spread of fake news, particularly during crucial events such as elections, presents an increasing challenge to the integrity of information. To address this challenge, we introduce FakeWatch ElectionShield, an innovative framework carefully designed to detect fake news. We have created a novel dataset of North American election-related news articles through a blend of advanced language models (LMs) and thorough human verification, for precision and relevance. We propose a model hub of LMs for identifying fake news. Our goal is to provide the research community with adaptable and accurate classification models in recognizing the dynamic nature of misinformation. Extensive evaluation of fake news classifiers on our dataset and a benchmark dataset shows our that while state-of-the-art LMs slightly outperform the traditional ML models, classical models are still competitive with their balance of accuracy, explainability, and computational efficiency. This research sets the foundation for future studies to address misinformation related to elections.
Unlocking Bias Detection: Leveraging Transformer-Based Models for Content Analysis
Raza, Shaina, Bamgbose, Oluwanifemi, Chatrath, Veronica, Ghuge, Shardul, Sidyakin, Yan, Muaad, Abdullah Y
Bias detection in text is imperative due to its role in reinforcing negative stereotypes, disseminating misinformation, and influencing decisions. Current language models often fall short in generalizing beyond their training sets. In response, we introduce the Contextualized Bi-Directional Dual Transformer (CBDT) Classifier. This novel architecture utilizes two synergistic transformer networks: the Context Transformer and the Entity Transformer, aiming for enhanced bias detection. Our dataset preparation follows the FAIR principles, ensuring ethical data usage. Through rigorous testing on various datasets, CBDT showcases its ability in distinguishing biased from neutral statements, while also pinpointing exact biased lexemes. Our approach outperforms existing methods, achieving a 2-4\% increase over benchmark performances. This opens avenues for adapting the CBDT model across diverse linguistic and cultural landscapes.