Goto

Collaborating Authors

 Baker, Stephen


A Generative Framework for Bidirectional Image-Report Understanding in Chest Radiography

arXiv.org Artificial Intelligence

The rapid advancements in large language models (LLMs) have unlocked their potential for multimodal tasks, where text and visual data are processed jointly. However, applying LLMs to medical imaging, particularly for chest X-rays (CXR), poses significant challenges due to the need for precise visual-textual alignment and the preservation of critical diagnostic details. In this paper, we propose Multi-Stage Adaptive Vision-Language Tuning (MAViLT), a novel framework designed to enhance multimodal reasoning and generation for CXR understanding. MAViLT incorporates a clinical gradient-weighted tokenization process and a hierarchical fine-tuning strategy, enabling it to generate accurate radiology reports, synthesize realistic CXRs from text, and answer vision-based clinical questions. We evaluate MAViLT on two benchmark datasets, MIMIC-CXR and Indiana University CXR, achieving state-of-the-art results across all tasks. Human evaluations further validate the clinical relevance and utility of MAViLT, making it a robust tool for real-world medical applications. This work demonstrates the feasibility of leveraging LLMs for multimodal medical imaging while addressing key challenges in vision-language integration.


Strategic Positioning in Tactical Scenario Planning

arXiv.org Artificial Intelligence

Capability planning problems are pervasive throughout many areas of human interest with prominent examples found in defense and security. Planning provides a unique context for optimization that has not been explored in great detail and involves a number of interesting challenges which are distinct from traditional optimization research. Planning problems demand solutions that can satisfy a number of competing objectives on multiple scales related to robustness, adaptiveness, risk, etc. The scenario method is a key approach for planning. Scenarios can be defined for long-term as well as short-term plans. This paper introduces computational scenario-based planning problems and proposes ways to accommodate strategic positioning within the tactical planning domain. We demonstrate the methodology in a resource planning problem that is solved with a multi-objective evolutionary algorithm. Our discussion and results highlight the fact that scenario-based planning is naturally framed within a multi-objective setting. However, the conflicting objectives occur on different system levels rather than within a single system alone. This paper also contends that planning problems are of vital interest in many human endeavors and that Evolutionary Computation may be well positioned for this problem domain.


Computational Scenario-based Capability Planning

arXiv.org Artificial Intelligence

Scenarios are pen-pictures of plausible futures, used for strategic planning. The aim of this investigation is to expand the horizon of scenario-based planning through computational models that are able to aid the analyst in the planning process. The investigation builds upon the advances of Information and Communication Technology (ICT) to create a novel, flexible and customizable computational capability-based planning methodology that is practical and theoretically sound. We will show how evolutionary computation, in particular evolutionary multi-objective optimization, can play a central role - both as an optimizer and as a source for innovation.